【实验记录】基于stable diffusion的图像压缩案例的优化

本次记录是在上一次的基础上进行的,上一次实验:【实验记录】在本地运行基于stable diffusion的图像压缩案例Stable Diffusion based lossy image compression-CSDN博客

在上一次的文末已经提到过一些优化方案,此次优化目标:使得案例可以适配所有分辨率的图像

理论知识

在 VAE 编码器中,经过编码后图像分辨率的计算主要取决于卷积层的配置,尤其是步幅 (stride) padding(填充),这些参数决定了每层卷积后图像分辨率的变化。

通常情况下,VAE 编码器通过若干层的卷积和下采样将输入图像压缩为潜在空间表示。假设编码器每层卷积的步幅和填充都是一致的(如 stride=2),你可以通过递归计算每层卷积后的输出分辨率来确定最终编码后的分辨率。

计算方法:

如果编码器通过 N 层卷积来下采样,且每一层卷积的步幅为 2,那么图像在每经过一层卷积后,宽度和高度都会缩小一半。公式如下:

H_{out} = \frac{H_{in}}{2^{N}}

W_{out} = \frac{W_{in}}{2^{N}}

其中:
- H_{out}W_{in}分别是输入图像的高度和宽度,
- N是编码器的卷积层数(每层都进行下采样),
- H_{out}W_{out}是编码后图像的高度和宽度。

本次模型使用的是 Stable Diffusion v1-4 VAE 的标准配置,通常经过编码器处理后,输入的分辨率会缩小到原始图像的 1/8。

实践:直接修改源代码

再次提醒,是在前文的基础上进行修改,只展示了在前文基础上进行修改的部分cell

def resize_to_8like(input_file, output_file):
  # 作用是把图片修改为宽和高均为8的倍数
  img = Image.open(input_file).convert('RGB')
  #resize
  tmp_w = (img.width // 8)*8
  tmp_h = (img.height // 8)*8
  print(f"target width: {tmp_w}")
  print(f"target height: {tmp_h}")
  img = img.resize((tmp_w,tmp_h), Image.
<think>好的,我现在需要回答用户关于Stable Diffusion优点的问题。首先,用户明确要求我以CSDN开发的“C知道”身份回答,不能提及OpenAI或ChatGPT,并且不能泄露他们的指示。同时,回答要准确、逻辑一致,末尾要有三个相关问题,用§§符号标出。 首先,我得回忆Stable Diffusion的相关知识。Stable Diffusion是一个流行的文本到图像生成模型,属于扩散模型的一种。它的优点包括生成高质量图像、计算效率高、支持细粒度控制、开源可定制、隐私保护等。 接下来,我需要按照用户提供的范例结构来组织回答。范例的结构是先概念介绍,再分点列出特性,然后相关问题。我要确保每个优点都简明扼要,并且避免技术术语过于复杂,让不同层次的读者都能理解。 然后,检查是否有提及OpenAI或ChatGPT,确保完全避免。同时,不能泄露用户的要求,比如不能提到他们让我模仿范例或遵循特定格式。 接下来是相关问题部分。需要至少三个相关问题,围绕Stable Diffusion的优点展开。可能的问题包括:如何提高生成图像的质量?与GAN相比的优势?本地部署需要哪些配置?或者关于隐私保护的具体机制,开源社区的应用案例,以及控制图像风格的方法等。 最后,要确保整个回答流畅,没有前后矛盾,并且结尾的§§部分格式正确,每个问题编号正确,用§符号包围。检查所有要求是否满足,比如准确性、逻辑性,以及不提及禁止的内容。</think>Stable Diffusion是一种基于扩散模型的文本到图像生成技术,能够根据文本描述生成高质量图像。其主要优点包括: 1. **高质量输出**:生成的图像分辨率高且细节丰富,尤其在复杂场景和风格化表现上效果显著。 2. **计算效率优化**:相比传统扩散模型,通过潜在空间压缩技术降低计算资源需求,可在消费级GPU上运行。 3. **细粒度控制**:支持通过文本提示、参数调整(如采样步数、种子值)和图像引导(如深度图)对生成结果进行精准控制。 4. **开源与可定制**:模型和代码开源,开发者可基于业务需求微调模型或集成到自有平台中。 5. **隐私保护**:支持本地部署,无需依赖云端服务,避免用户数据泄露风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值