矩阵求解复数(aniwoth求解串扰)

所以这种求解串扰的格式是因为,有串扰的共轭项在方程组中

复数共轭项的作用,但是这是二次方程,

求解PCB微带线串扰问题可以使用ADE-FDTD方法,代码实现较为复杂,需要考虑多种因素,如微带线的电磁特性、微带线之间的耦合等。以下是一个简单的二维ADE-FDTD的代码示例,仅供参考: ``` % 定义常量 c = 299792458; % 光速 mu0 = pi*4e-7; epsilon0 = 8.854e-12; dx = 0.01; % 空间步长 dy = 0.01; dt = 0.001; % 时间步长 NT = 1000; % 时间步数 Nx = 200; % x方向空间格点数 Ny = 200; % y方向空间格点数 % 初始化场量 Ex = zeros(Nx,Ny); Ey = zeros(Nx,Ny); Hz = zeros(Nx,Ny); % 定义微带线参数 w = 0.5; % 微带线宽度 s = 0.5; % 微带线间距 h = 0.2; % 微带线高度 eps_r = 4.3; % 微带线介质常数 eps = eps_r*epsilon0; % 绝对介电常数 mu = mu0; % 磁导率 sigma = 5.96e7; % 微带线电导率 % 计算系数 ca = (1-sigma*dt/2/eps)/(1+sigma*dt/2/eps); cb = dt/eps/dx/(1+sigma*dt/2/eps); da = (1-sigma*dt/2/mu)/(1+sigma*dt/2/mu); db = dt/mu/dx/(1+sigma*dt/2/mu); % 模拟主循环 for n = 1:NT % 更新H场 for i = 1:Nx-1 for j = 1:Ny-1 Hz(i,j) = da*Hz(i,j) + db*((Ex(i,j+1)-Ex(i,j))/dy - (Ey(i+1,j)-Ey(i,j))/dx); end end % 更新E场 for i = 2:Nx-1 for j = 2:Ny-1 % 计算微带线区域的电磁场 if (i*dx>=50-w/2 && i*dx<=50+w/2 && j*dy>=50 && j*dy<=50+s) eps_eff = (eps_r+1)/2; ca = (1-sigma*dt/2/eps_eff)/(1+sigma*dt/2/eps_eff); cb = dt/eps_eff/dx/(1+sigma*dt/2/eps_eff); Ex(i,j) = ca*Ex(i,j) + cb*(Hz(i,j)-Hz(i,j-1)); Ey(i,j) = ca*Ey(i,j) + cb*(Hz(i-1,j)-Hz(i,j)); else Ex(i,j) = ca*Ex(i,j) + cb*(Hz(i,i)-Hz(i,j-1)); Ey(i,j) = ca*Ey(i,j) + cb*(Hz(i-1,j)-Hz(i,j)); end end end % 边界条件 Ex(:,1) = Ex(:,2); Ex(:,Ny) = Ex(:,Ny-1); Ex(1,:) = Ex(2,:); Ex(Nx,:) = Ex(Nx-1,:); Ey(:,1) = Ey(:,2); Ey(:,Ny) = Ey(:,Ny-1); Ey(1,:) = Ey(2,:); Ey(Nx,:) = Ey(Nx-1,:); Hz(:,1) = Hz(:,2); Hz(:,Ny) = Hz(:,Ny-1); Hz(1,:) = Hz(2,:); Hz(Nx,:) = Hz(Nx-1,:); % 绘制场量分布 imagesc(Hz); colorbar; drawnow; end ``` 需要注意的是,该代码只是一个简单的PCB微带线串扰问题求解的示例,实际上PCB微带线串扰问题的求解需要考虑多种因素,如微带线的形状、位置、朝向等,需要根据具体情况进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值