图像相似度-c++

题目描述
给出两幅相同大小的黑白图像(用0-1矩阵)表示,求它们的相似度。若两幅图像在相同位置上的像素点颜色相同,则称它们在该位置具有相同的像素点。两幅图像的相似度定义为相同像素点数占总像素点数的百分比。

输入描述:
第一行包含两个整数m和n,表示图像的行数和列数,用单个空格隔开。1≤m≤100, 1≤n≤100。之后m行,每行n个整数0或1,表示第一幅黑白图像上各像素点的颜色,相邻两个数用单个空格隔开。之后m行,每行n个整数0或1,表示第二幅黑白图像上各像素点的颜色,相邻两个数用单个空格隔开。
输出描述:
一个实数,表示相似度(以百分比的形式给出),精确到小数点后两位。
示例1
输入

3 3
1 0 1
0 0 1
1 1 0
1 1 0
0 0 1
0 0 1

输出

44.44
#include<iostream>
#include<iomanip>
using namespace std;

int main ()
{
    int x,y;
    cin>>x>>y;             //放在此处对
    int m[x][y];
    int n[x][y];
    double same=0;
    //输入第一个矩阵
       //cin>>x>>y;        放在此处错
        for(int i=0;i<x;i++)    //行
        {
            for(int j=0;j<y;j++)    //列
            {
                cin>>m[i][j];
            }
        }
    //输入第二个矩阵
        for(int i=0;i<x;i++)    //行
        {
            for(int j=0;j<y;j++)    //列
            {
                cin>>n[i][j];
            }
        }
    
    for(int i=0;i<x;i++)
    {
        for(int j=0;j<y;j++)
            if(m[i][j]==n[i][j])
                same++;
    }
    cout<<fixed<<setprecision(2)<<(double)((same*100)/(x*y))<<endl;
}
### C++ 实现图像相似度计算 对于使用C++实现图像相似度计算,可以采用多种方法来评估两张图片之间的相似程度。一种常见的做法是比较两个图像对应像素点的差异,并基于此构建相似度指标。 #### 使用结构相似性指数 (SSIM) 尽管SSIM主要用于衡量一张图片压缩后的失真度,在某些情况下也可以用于比较两图的相似度[^1]。然而,由于其复杂性和特定的应用场景,直接应用于通用的图像对比可能不是最优选择。 #### 计算相同像素点比例 更简单直观的方式是通过统计两幅图像中相匹配的像素数量并将其转换成百分比形式作为相似度得分。这种方法特别适合处理由0和1组成的二值化黑白图像数据集: ```cpp #include <iostream> using namespace std; int main() { int rows, cols; cin >> rows >> cols; bool imgA[rows][cols]; bool imgB[rows][cols]; // Read first image data into array 'imgA' for(int i = 0; i < rows; ++i){ for(int j = 0; j < cols; ++j){ cin >> imgA[i][j]; } } // Read second image data into array 'imgB' for(int i = 0; i < rows; ++i){ for(int j = 0; j < cols; ++j){ cin >> imgB[i][j]; } } double matchCount = 0; for(int i = 0; i < rows; ++i){ for(int j = 0; j < cols; ++j){ if(imgA[i][j] == imgB[i][j]){ matchCount++; } } } cout << fixed; cout.precision(2); cout << ((matchCount / (rows * cols)) * 100) << endl; } ``` 上述程序实现了读取两个维度一致的矩形区域内的黑白位图信息,并输出这两个图形间共享同样颜色状态的位置所占的比例,即为两者间的相似度分数[^3]。 #### 利用第三方库加速开发过程 为了简化编码工作量以及提高性能表现,还可以考虑引入专门针对计算机视觉任务设计好的开源软件包,比如OpenCV。它提供了丰富的API接口支持各种类型的图像操作与分析功能,其中包括但不限于特征提取、变换检测等高级特性。利用这些工具能够快速搭建起高效的解决方案框架。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

&twelve

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值