异质图与知识图谱

文章探讨了知识图谱在关系建模中的重要性,以及异质图如何更深入地处理节点的异质性和元路径的语义级别嵌入。知识图谱的构建涉及实体识别、实体对齐和关系抽取,而异质图则用于推理阶段,通过图结构信息推断额外信息并训练节点和边的embedding。
摘要由CSDN通过智能技术生成

异质图与知识图谱

知识图谱

  • 重点在学习图数据时强调的是节点跟关系的表示,知识图谱在应用更关注于关系建模。

异质图

  • 更注重节点的异质性以及节点和边之间的组织
  • 学习目标节点基于元路径的特征嵌入 (HGT:邻居节点基于边的注意力表示)
  • 学习基于不同元路径的语义级别的嵌入。(HGT:不同邻居节点的消息传递)

知识图谱可分为构建和推理两个环节,而异质图作为一个工具可作用于推理环节。具体来讲,在图谱构建阶段,我们需要完成:实体识别、实体对齐、关系抽取等工作。但是根据原始数据识别的实体和关系毕竟有限,我们还需要根据图本身的结构信息再推断出一些额外的信息。这时我们可以根据识别的实体和关系构建异质图,然后训练出节点和边embedding。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值