异质图与知识图谱
知识图谱
- 重点在学习图数据时强调的是节点跟关系的表示,知识图谱在应用更关注于关系建模。
异质图
- 更注重节点的异质性以及节点和边之间的组织
- 学习目标节点基于元路径的特征嵌入 (HGT:邻居节点基于边的注意力表示)
- 学习基于不同元路径的语义级别的嵌入。(HGT:不同邻居节点的消息传递)
知识图谱可分为构建和推理两个环节,而异质图作为一个工具可作用于推理环节。具体来讲,在图谱构建阶段,我们需要完成:实体识别、实体对齐、关系抽取等工作。但是根据原始数据识别的实体和关系毕竟有限,我们还需要根据图本身的结构信息再推断出一些额外的信息。这时我们可以根据识别的实体和关系构建异质图,然后训练出节点和边embedding。