机器智能已迈入深度学习时代,随着机器学习的爆发,以深度学习和深度强化学习为代表的自演进智能算法在空战行为涌现方面表现出巨大优势,诸多基于此类方法研发的智能空战项目逐渐被提出 。
一、发展历程
自 20世纪 60年代 以来,智能空战理论和工 程实践研究获得了国内外学术界与工业界的持续关注 。 回顾其发展历程,从表象上看,历经了专家 机动逻辑、自动规则生成、规则演进、机器学习及 演示验证等 5个主要历史阶段。 从本质上看,智能空战研究正在从以人类经验为主的传统专家系统迈向以机器智能自我演进为特征的全新脉络。
智能空战的研究最早起步于20世纪 60 年 代,Burgin 和 Owens 自 1969 年起着手在 NASA兰利研究中心的资助下为该研究中心的微分机动模拟器开发名为自适应机动逻辑的机动决策软件。AML可以模拟敌方的战斗机与操控模拟器的飞行员进行实时对战,同时也可以通过操控模拟对抗中交战双方的2架飞机来实现飞机及 武器 系 统 的 参 数研 究 等 工作。AML系统开发耗 时近 20年,虽然是人类历史上第一次用人工智能替代飞行员的大胆尝试,但受限于当时的技术条件,仍存在诸多缺憾 。例如①提升AML的规则库耗 时冗长且非 常依赖飞行员对决策结果的评估;②系统需将飞行员对 机动动作的偏好选择以硬编码的形式写入决策算法中。
20世纪 90年代开发了战术引导研究与评估<