Krippendorff’s Alpha 是啥

一、起因是这篇文章

在专题分析过程中,我们确定了三个主要主题 (Braun & Clarke, 2006; Ezzy, 2002; Akter et al., 2020).确定的三个主要主题如下:training data bias,method bias 和societal bias。然后通过a reliability measure Krippendorff's alpha(或Kalpha)对主题进行验证和交叉检查。

  • 首先,通过在三个标准下分析最终的40篇文章中的每一篇,测量Kalpha。
  • 然后,我们通过采用其他研究者概述的程序计算了识别主题的互译信度 (Hayes & Krippendorff, 2007;Swert, 2012; Hayes, 2012)
  • 最后,分析结果的Kalpha值为0.90,显著高于0.80的阈值水平,从而提供了足够的可靠性证据(Table 3)

在这篇文章中提到了对文章评价的一个标准,Kalpha,并且做了分析量化出具体的值0.90,与0.8的阈值比较,提供可靠性证据。

那么Kalpha究竟是什么呢?

搜索找到Klaus Krippendorff本人在2011.1.25发布的一篇文章“Computing Krippendorff’s Alpha-Relia

下面是使用Python实现Cronbach's alpha的示例代码: ```python import pandas as pd from pyreadstat import cronbach_alpha # 读取数据 data = pd.read_csv('data.csv') # 提取需要计算的数据列 data_to_analyze = data[['item1', 'item2', 'item3', 'item4', 'item5']] # 计算Cronbach's alpha alpha = cronbach_alpha(data_to_analyze)[0] print('Cronbach\'s alpha:', alpha) ``` 下面是使用Python实现Krippendorff's alpha的示例代码: ```python import pandas as pd from sklearn.metrics import pairwise_distances from scipy.stats import krippendorff_alpha # 读取数据 data = pd.read_csv('data.csv') # 提取需要计算的数据列 data_to_analyze = data[['coder1', 'coder2', 'coder3']] # 计算距离矩阵 distances = pairwise_distances(data_to_analyze, metric='nominal') # 计算Krippendorff's alpha alpha = krippendorff_alpha(data_to_analyze.values, metric='nominal', distance=distances) print('Krippendorff\'s alpha:', alpha) ``` 下面是使用Python实现Cohen's kappa的示例代码: ```python import pandas as pd from sklearn.metrics import cohen_kappa_score # 读取数据 data = pd.read_csv('data.csv') # 计算Cohen's kappa kappa = cohen_kappa_score(data['coder1'], data['coder2']) print('Cohen\'s kappa:', kappa) ``` 下面是使用Python实现Fleiss' kappa的示例代码: ```python import pandas as pd from sklearn.metrics import cohen_kappa_score from sklearn.metrics import confusion_matrix # 读取数据 data = pd.read_csv('data.csv') # 提取需要计算的数据列 data_to_analyze = data[['coder1', 'coder2', 'coder3']] # 计算混淆矩阵 confusion = confusion_matrix(data_to_analyze.values.flatten(), [1, 2, 3]) # 计算Fleiss' kappa kappa = cohen_kappa_score(data_to_analyze, weights='quadratic') print('Fleiss\' kappa:', kappa) ``` 下面是使用Python实现ICC的示例代码: ```python import pandas as pd from statsmodels.stats.anova import AnovaRM from statsmodels.stats.inter_rater import ICC # 读取数据 data = pd.read_csv('data.csv') # 计算ICC model = AnovaRM(data, 'score', 'id', within=['task']) results = model.fit() icc = ICC(data['id'], data['score']).reliability print('ICC:', icc) ``` 上面的示例代码仅供参考,具体的实现方式可能因数据类型和具体情况而异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值