SPSS中的数据分析—信度效度检验【2】

前一篇文章跟大家分享了在SPSS中如何对量表问卷进行信度检验,我们通过文章了解到了问卷的信度检验是通过Cronbach's α(克朗巴哈)系数系数法来检测数据的信度,同时结果显示我们用来进行展示的数据是已经通过了信度检验。那针对这些数据我们又该如何进行效度检验呢?今天我们就继续接着上一篇文章来看看如何对问卷数据进行效度检验。

在分析之前,我们首先需要知道,对量表的效度检测是为了更好的证明所用问卷适合此次实证研究。而效度检测可以通过因子分析检验看量表结构归类是否合理。

当用因子分析检验效度时,首先需要满足因子分析的前提条件,即题项之间具有较强的相关性,这反映在两个检验指标上:1、KMO值,2、Bartlett球形检验值。其中,KMO值用于比较题项间简单相关和偏相关系数,取值在0到1之间。是否适合做因子分析的标准为:大于0.9,非常适合;0.7-0.9适合;0.6-0.7较为适合;0.6-0.5之间不太适合;0.5以下放弃。Bartlett球形检验值用以检验题项间相关系数是否显著,如果显著(即sig.<0.05)则适合做因子分析。

在进行效度检验的时候,我们需要选择分析—降维—因子分析来进入到因子分析的操作界面当中,如下图所示:

从上图我们可以看到,在进入到因子分析的界面以后,我们首先需要把我们所要进行效度检验的题目选择并且加入到变量栏中去。

在将问卷题目选入到变量栏中以后,我们对因子分析进行设置,首先我们点击描述,勾选最下方的KMO和Bartlett的球形度检验,接着我们在旋转中选择最大方差法,最后我们在选项中勾选显示格式中的两个选项,绝对值可以设置为0.5即可。最后我们点击确定就能够得出我们本次效度分析的分析结果:

从上图可以看出:KMO的数值是0.708,介于0.7-0.9之间,表示此张问卷中的量表适合因子分析。下方的Bartlett(巴特利特)球度检验结果:卡方值为744.813,数值较大,证明所对应P值(为0.000)<0.05,因此巴特利特(Bartlett)球度检测具有显著意义。

从解释总方差表中可以看到,系统将四道量标题分为六个因子,这六个因子对整体的解释度能达到64.453%。

上表是因子分析结果中的旋转成分矩阵,从表中我们就能看到本次因子分析将所有问题一共分成了六类,分别为1-4题、5-8题、9-12题、13-15题、16-18题、19-20题这六个因子,其中我们可以将1-4题表述为影响购买手机的外部因素,5-8题表述为影响手机购买的品牌和款式因素,9-12题表述为影响手机购买的配置因素,13-15题表述为影响手机购买的环境因素,16-18题表述为影响手机购买的价格因素,19-20题表述为影响购买手机的其他因素(也可以将最后20题加入到第一个因素中)。

到这里我们整个问卷的信度效度分析就全部做完了,从整个分析结果来看,针对本次的问卷数据,不管是之前做的信度分析结果还是今天的效度分析结果都是比较好的。也就是说这一份问卷通过了信度效度检验,我们也就可以继续针对这份问卷进行其他的分析了。

**文章来自公众号【小白数据营】**

大家可以私信我进入到交流群中参与讨论和交流。

### 如何在 Python 中实现效度检验 #### 内容效度分析 内容效度是指测量工具的内容能够代表所要评估的概念的程度。虽然内容效度通常依赖于专家判断,但在某些情况下可以通过统计手段辅助验证。 对于内容效度的定量评价可以采用因子分析的方法来确认量表题目是否覆盖了预期的维度[^1]。下面是一个简单的例子: ```python import pandas as pd from factor_analyzer import FactorAnalyzer # 创建数据框df用于存储问卷数据 data = {'Q1': [...], 'Q2': [...]} # 这里省略实际的数据填充过程 df = pd.DataFrame(data) fa = FactorAnalyzer(rotation='varimax') fa.fit(df) ev, v = fa.get_eigenvalues() print('Eigenvalues:', ev) ``` 此代码片段展示了如何通过计算特征根(eigenvalue)大于1的原则决定保留的因素数量,并进一步解释这些因素能否合理反映原始变量的信息结构。 #### 准则效度分析 准则效度指的是新测验的结果与其他已确立的标准之间存在关联性的程度。这通常涉及两个变量之间的相关性测试,如皮尔逊积差相关系数等。 假设有一个外部标准Y和一组新的观测X,则可通过如下方式计算两者间的线性关系强度: ```python from scipy.stats import pearsonr correlation, p_value = pearsonr(X, Y) print(f'Pearson correlation coefficient: {correlation}, P-value: {p_value}') ``` 这段脚本会输出两者的皮尔逊相关系数及其显著水平P值,以此衡量它们间是否存在有意义的相关性。 #### 结构效度分析 结构效度关注的是心理特质或理论概念背后的潜在结构是否得到了恰当的表现形式。常用的技术包括探索性和验证性因子分析。 以下是执行探索性因子分析(Exploratory Factor Analysis,EFA)的一个实例: ```python efa = FactorAnalyzer(n_factors=3, rotation='promax') # 设定提取三个公因数并应用斜交旋转法 efa.fit(df) loadings = efa.loadings_ pd.set_option('display.max_columns', None) print(pd.DataFrame(loadings)) ``` 上述程序尝试识别出影响多个项目的共同潜藏要素,并给出各个项目在这几个公共因子上的负荷情况,从而帮助理解量表内部结构的有效性。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值