矩阵可逆的充分必要条件

矩阵可逆的充分必要条件是:一个 n×n 矩阵 A 可逆当且仅当其行列式不为零,即 det(A) \neq 0

证明

我们分别证明“如果”与“只有如果”两部分。

1. 必要性:如果 A 可逆,则det(A) \neq 0
  • 假设矩阵 A可逆,存在一个矩阵 B 使得:

    AB = I

    其中 I 是单位矩阵。

  • 根据行列式的性质,有:

    \det(AB) = \det(A) \cdot \det(B)
  • 由于 \det(I) = 1 ,因此:

    \det(A) \cdot \det(B) = 1
  • 这说明 \det(A) \neq 0 ,否则无法得到乘积为1的结果。

2. 充分性:如果 \det(A) \neq 0 ,则 A 可逆
  • 假设 \det(A) \neq 0。根据行列式的性质,行列式非零意味着矩阵的列向量线性无关。

  • 因此,矩阵 A 的列空间的维数为 n,即其列向量能够生成 \mathbb{R}^n 。

  • 根据线性代数的理论,若列向量线性无关且能够生成整个空间,则矩阵 A 是满秩的,存在 A 的逆矩阵 B 使得:

    AB = I

结论

综上所述,矩阵 A 可逆的充分必要条件是 \det(A) \neq 0 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值