矩阵可逆的充分必要条件是:一个 n×n 矩阵 A 可逆当且仅当其行列式不为零,即 。
证明
我们分别证明“如果”与“只有如果”两部分。
1. 必要性:如果 A 可逆,则
-
假设矩阵 A可逆,存在一个矩阵 B 使得:
其中 I 是单位矩阵。
-
根据行列式的性质,有:
-
由于
,因此:
-
这说明
,否则无法得到乘积为1的结果。
2. 充分性:如果
,则 A 可逆
-
假设
。根据行列式的性质,行列式非零意味着矩阵的列向量线性无关。
-
因此,矩阵 A 的列空间的维数为 n,即其列向量能够生成
。
-
根据线性代数的理论,若列向量线性无关且能够生成整个空间,则矩阵 A 是满秩的,存在 A 的逆矩阵 B 使得:
结论
综上所述,矩阵 A 可逆的充分必要条件是 。