一阶齐次常系数线性微分方程的解法

一阶齐次常系数线性微分方程的标准形式为:

y′+ay=0y

其中 a 是一个常数。解决这个方程的步骤如下:

1. 重写方程

首先,可以将方程重写为:

y′=−ay

2. 分离变量

通过分离变量,我们可以得到:

\frac{dy}{y} = -a \, dx

3. 积分

对方程两边进行积分:

\int \frac{dy}{y} = \int -a \, dx

这给出:

\ln |y| = -ax + C

其中 CCC 是积分常数。

4. 解出 y

通过指数化得到:

|y| = e^{-ax + C} = e^C e^{-ax}

我们可以用 C' = e^C 表示常数,得到:

y = C' e^{-ax}

5. 通解形式

因此,方程的通解为:

y = Ce^{-ax}

其中 C 是任意常数(可以取任何实数)。

6. 总结

一阶齐次常系数线性微分方程的解法可以总结为以下步骤:

  1. 重写方程为标准形式。
  2. 通过分离变量将 y 和 x 的函数分开。
  3. 对两边进行积分。
  4. 解出 y,得到通解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值