一阶齐次常系数线性微分方程的标准形式为:
y′+ay=0y
其中 a 是一个常数。解决这个方程的步骤如下:
1. 重写方程
首先,可以将方程重写为:
y′=−ay
2. 分离变量
通过分离变量,我们可以得到:
3. 积分
对方程两边进行积分:
这给出:
其中 CCC 是积分常数。
4. 解出 y
通过指数化得到:
我们可以用 表示常数,得到:
5. 通解形式
因此,方程的通解为:
其中 C 是任意常数(可以取任何实数)。
6. 总结
一阶齐次常系数线性微分方程的解法可以总结为以下步骤:
- 重写方程为标准形式。
- 通过分离变量将 y 和 x 的函数分开。
- 对两边进行积分。
- 解出 y,得到通解。