7.4 一阶线性微分方程

本文深入探讨了一阶线性微分方程的两类主要类型——齐次和非齐次。对于一阶齐次线性微分方程,介绍了其定义和解法,并通过实例进行解析。接着,讨论了一阶非齐线性微分方程,尽管形式类似,但解法更为复杂,提出了求解通解的策略。文章提供了详细的步骤和公式,帮助读者理解并掌握这两种类型的微分方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇内容为一阶线性微分方程,分为两个部分,第一部分:一阶齐次线性微分方程,第二部分:一阶非齐次线性微分方程

一阶齐次线性微分方程

定义

在这里插入图片描述
从形式上来看,一阶齐次线性微分方程就是y对x的导数+一个关于x的方程和y相乘

解法

一阶齐次线性微分方程的解是有公式的,我们来推一下
在这里插入图片描述
解法?什么解法?不是有公式吗?

例题

例1
在这里插入图片描述
例2
在这里插入图片描述

一阶非齐线性微分方程

一阶非齐线性微分方程的形式与一阶齐次线性微分方程相似
在这里插入图片描述
方程的左边完全一致,既然二者形式这么相似,那么猜想二者的通解的形式也类似在这里插入图片描述
那么现在的关键就是解出来C(x),将上方猜想的通解代入
在这里插入图片描述

到这里为止,恭喜你解锁了一阶非齐线性微分方程的通解公式,这个公式看起来好长啊,不好记,有没有什么简化版?当然……没有,很遗憾,慢慢记吧

例题

例1在这里插入图片描述
例2在这里插入图片描述

本篇内容为一阶线性微分方程,分成两个部分,分别是一阶齐次和非齐线性微分方程,两种方程都有对应的通解公式,需要记住,本篇完。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值