一阶非齐次常系数线性微分方程的标准形式为:
其中 a 是常数,f(x) 是非齐次项。解决这个方程的步骤如下:
1. 求解对应的齐次方程
首先,我们求解对应的齐次方程:
其解为:
其中 C 是任意常数。
2. 寻找特解
接下来,我们需要找到非齐次方程的特解 。可以使用以下几种方法来寻找特解:
-
常数变易法:假设特解的形式与 f(x) 相关,代入方程求解。
-
未定系数法:对于某些特定形式的 f(x) ,可以假设特解的形式并求出待定系数。例如:
- 如果 f(x) 是常数,假设
。
- 如果 f(x) 是一次多项式 Ax+B ,假设
。
- 如果 f(x) 是指数函数
,假设
。
- 如果 f(x) 是三角函数 sin(kx) 或 cos(kx) ,假设
。
- 如果 f(x) 是常数,假设
注:特解的求法参见文章:求解一阶非齐次常系数线性微分方程的特解
3. 代入求解特解
将假设的特解 代入原方程,求解出待定系数。
4. 写出通解
一旦得到特解 ,通解为齐次解和特解的和:
5. 总结
一阶非齐次常系数线性微分方程的解法步骤如下:
- 求解对应的齐次方程,得到齐次解
。
- 寻找非齐次方程的特解
。
- 代入原方程并求解待定系数。
- 写出通解
。