求解一阶非齐次常系数线性微分方程

一阶非齐次常系数线性微分方程的标准形式为:

y' + ay = f(x)

其中 a 是常数,f(x) 是非齐次项。解决这个方程的步骤如下:

1. 求解对应的齐次方程

首先,我们求解对应的齐次方程:

y' + ay = 0

其解为:

y_h = Ce^{-ax}

其中 C 是任意常数。

2. 寻找特解

接下来,我们需要找到非齐次方程的特解 y_p 。可以使用以下几种方法来寻找特解:

  • 常数变易法:假设特解的形式与 f(x) 相关,代入方程求解。

  • 未定系数法:对于某些特定形式的 f(x) ,可以假设特解的形式并求出待定系数。例如:

    • 如果 f(x) 是常数,假设 y_p = B
    • 如果 f(x)  是一次多项式 Ax+B ,假设 y_p = Cx + D
    • 如果 f(x) 是指数函数 e^{kx} ,假设 y_p = Be^{kx}
    • 如果 f(x)  是三角函数 sin⁡(kx) 或 cos⁡(kx) ,假设y_p = A\sin(kx) + B\cos(kx)

注:特解的求法参见文章:求解一阶非齐次常系数线性微分方程的特解

3. 代入求解特解

将假设的特解 y_p 代入原方程,求解出待定系数。

4. 写出通解

一旦得到特解 y_p ,通解为齐次解和特解的和:

y = y_h + y_p = Ce^{-ax} + y_p

5. 总结

一阶非齐次常系数线性微分方程的解法步骤如下:

  1. 求解对应的齐次方程,得到齐次解 y_h​。
  2. 寻找非齐次方程的特解 y_p​。
  3. 代入原方程并求解待定系数。
  4. 写出通解 y = y_h + y_p​。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值