求解一阶非齐次常系数线性微分方程的特解时,常数变易法和未定系数法是两种常用的方法。下面具体讲解这两种方法。
1. 常数变易法
常数变易法是一种通过调整齐次解中的常数来找到特解的方法。
步骤:
-
求解齐次方程: 先求解对应的齐次方程:
其解为:
-
调整常数: 假设特解的形式是齐次解中常数 C 的函数,即:
其中 u(x) 是一个待定函数。
-
求导: 计算
的导数:
-
代入原方程: 将
和
代入非齐次方程:
经过简化,得到:
-
解出 u(x): 解出 u′(x):
然后积分得到 u(x):
-
得到特解: 最终,特解为:
2. 未定系数法
未定系数法适用于特定形式的非齐次项 f(x) ,通过假设特解的形式并求解待定系数来找到特解。
步骤:
-
确定 f(x) 的形式: 根据非齐次项 f(x) 的形式,选择合适的假设特解
的形式。常见的情况包括:
- 如果 f(x) 是常数 B ,假设
。
- 如果 f(x) 是一次多项式 Ax+B ,假设
。
- 如果 f(x) 是指数函数
,假设
。
- 如果 f(x) 是三角函数 sin(kx) 或 cos(kx) ,假设
。
- 如果 f(x) 是常数 B ,假设
-
代入原方程: 将假设的特解
代入原方程,计算
并代入:
-
求解待定系数: 根据代入后的等式,比较左右两边的系数,得到待定系数的值。
-
得到特解: 最终得到的
就是所需的特解。
总结
- 常数变易法适用于更广泛的情况,尤其是当非齐次项 f(x) 形式复杂时,能够通过函数 u(x) 进行调整。
- 未定系数法适合于非齐次项 f(x) 具有特定形式(如多项式、指数、三角函数等)的情况,方法较为直接。