证明:K-means算法的收敛性

K-means算法是一种常用的聚类算法,其核心思想是通过迭代优化目标函数(平方误差和,Sum of Squared Errors,SSE)来对数据进行聚类。以下是证明K-means算法收敛性的逻辑:


1. K-means算法的目标函数

K-means算法的目标是最小化以下目标函数(SSE):

J = \sum_{k=1}^K \sum_{x_i \in C_k} \|x_i - \mu_k\|^2

其中:

  • K 是聚类的个数;
  • C_k 是第 k 个簇;
  • \mu_k​ 是第 k 个簇的中心(质心);
  • \|x_i - \mu_k\|^2  是样本点 x_i 与质心 \mu_k 之间的欧几里得距离的平方。

2. K-means算法的步骤

K-means算法分为两个主要步骤:

  1. 分配步骤(Assignment Step):

    • 将每个数据点 x_i 分配到距离其最近的质心 \mu_k 所属的簇中。
  2. 更新步骤(Update Step):

    • 重新计算每个簇的质心,使其等于该簇中所有数据点的均值。

这两个步骤交替进行,直至算法收敛。


3. 证明收敛性

(1) 目标函数单调下降

在每次迭代中,K-means算法的目标函数 J 不增加,这是收敛的基础。

  • 分配步骤: 在分配步骤中,算法将每个数据点 x_i 分配到最近的质心 \mu_k 。此操作减少了每个数据点到其对应质心的距离平方和,因此目标函数 J 单调减少。

  • 更新步骤: 在更新步骤中,质心 \mu_k 被重新计算为簇 C_k 中所有数据点的均值:

    \mu_k = \frac{1}{|C_k|} \sum_{x_i \in C_k} x_i

    根据欧几里得距离的性质,簇的均值能够最小化每个数据点到质心的平方距离和,因此此步骤也减少了目标函数 J 。

综上,每次迭代后,目标函数 J 单调非增,即:

J^{(t+1)} \leq J^{(t)}

(2) 目标函数的下界

目标函数 J 是数据点到质心的平方距离和,因此 J≥0 。目标函数单调减少且有下界,保证了K-means算法的收敛性。


4. 收敛的形式

K-means算法的收敛性有两种可能的形式:

  1. 簇分配不再改变

    • 当分配步骤中每个数据点的簇分配不再改变时,算法达到收敛,此时目标函数不再减少。
  2. 质心不再更新

    • 当更新步骤中所有质心的位置不再变化时,算法达到收敛。

5. 算法的局限性

虽然K-means算法保证了目标函数单调下降并最终收敛,但它可能会收敛到一个局部最优解,而不是全局最优解。这是因为K-means的结果依赖于初始质心的选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值