YOLOv5s 剪枝

本文档详细介绍了使用YOLOv5s进行模型剪枝的完整流程,包括环境配置、基础训练、稀疏训练、通道剪枝、微调以及剪枝后模型的推理步骤。通过提供相关源码地址和具体操作指南,帮助读者实践模型压缩和优化。
摘要由CSDN通过智能技术生成

yolov5_prune

yolov5_prune源码地址:https://github.com/ZJU-lishuang/yolov5_prune
yolov5-v4源码地址:https://github.com/ZJU-lishuang/yolov5-v4

环境配置

python = 3.7
torch = 1.7.0+cu101
torchvision = 0.8.1+cu101

剪枝步骤

基础训练

YOLOv5自定义数据集训练:https://zhouchen.blog.csdn.net/article/details/108122600

在自己使用yolov5训练数据集时,因yolov5的warmup和余弦退火机制
在这里插入图片描述

应尽量将epochs数量调大,训练效果才能较优

在yolov5-v4项目运行

python train.py --img 640 --batch 2 --epochs 120 --weights weights/yolov5s.pt --data data
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值