《初等数论》:欧拉定理、费马小定理、RSA密码编解码原理

欧拉定理

  m   \,m\, m是大于   1   \,1\, 1的整数,   ( a   , m ) = 1   \,(a\,,m)=1\, (a,m)=1,则   a φ ( m ) ≡ 1  ⁣ ⁣ ( m o d m )   \,a^{\varphi(m)} \equiv 1 \!\! \pmod{m}\, aφ(m)1(modm)

证 : 若   r 1 , r 2 , ⋯   , r φ ( m )   是 模   m   的 简 化 剩 余 系 , 那 么 当   ( a   , m ) = 1   时 ,   a r 1 , a r 2 , ⋯   , a r φ ( m )   也 是 模   m   的 简 化 剩 余 系 , 故   ( a r 1 ) ( a r 2 ) ⋯ ( a r φ ( m ) ) ≡ r 1 r 2 ⋯ r φ ( m )  ⁣ ⁣ ( m o d m )   , 即   a φ ( m ) ( r 1 r 2 ⋯ r φ ( m ) ) ≡ r 1 r 2 ⋯ r φ ( m )  ⁣ ⁣ ( m o d m )   , 又   ( r 1   , m ) = ( r 2   , m ) = ⋯ = ( r φ ( m )   , m )   , 即   ( r 1 r 2 ⋯ r φ ( m )   , m ) = 1   , 故   a φ ( m ) ≡ 1  ⁣ ⁣ ( m o d m )   证:若\,r_1,r_2,\cdots,r_{\varphi(m)}\,是模\,m\,的简化剩余系,那么当\,(a\,,m)=1\,时,\,ar_1,ar_2,\cdots,ar_{\varphi(m)}\,也是模\,m\,的简化剩余系,故\,(ar_1)(ar_2)\cdots(ar_{\varphi(m)}) \equiv r_1r_2\cdots r_{\varphi(m)} \!\! \pmod{m}\,,即\,a^{\varphi(m)}(r_1r_2\cdots r_{\varphi(m)}) \equiv r_1r_2 \cdots r_{\varphi(m)} \!\! \pmod{m}\,,又\,(r_1\,,m)=(r_2\,,m)=\cdots=(r_{\varphi(m)}\,,m)\,,即\,(r_1r_2\cdots r_{\varphi(m)}\,,m)=1\,,故\,a^{\varphi(m)}\equiv 1 \!\! \pmod{m}\, r1,r2,,rφ(m)m,(a,m)=1,ar1,ar2,,arφ(m)m,(ar1)(ar2)(arφ(m))r1r2rφ(m)(modm),aφ(m)(r1r2rφ(m))r1r2rφ(m)(modm),(r1,m)=(r2,m)==(rφ(m),m),(r1r2rφ(m),m)=1,aφ(m)1(modm)

费马小定理

  p   \,p\, p为质数,   p ∤ a   \,p \nmid a\, pa,则   a p − 1 ≡ 1  ⁣ ⁣ ( m o d p )   \,a^{p-1} \equiv 1 \!\! \pmod{p}\, ap11(modp)

证 : 由 于   p   为 质 数 , 所 以   φ ( p ) = p − 1   , 又   p ∤ a   , 故   ( a   , p ) = 1   , 因 此 在 欧 拉 定 理 中 取   m = p   , 就 有   a p − 1 ≡ 1  ⁣ ⁣ ( m o d p )   证:由于\,p\,为质数,所以\,\varphi(p)=p-1\,,又\,p \nmid a\,,故\,(a\,,p)=1\,,因此在欧拉定理中取\,m=p\,,就有\,a^{p-1} \equiv 1 \!\! \pmod{p}\, p,φ(p)=p1,pa,(a,p)=1,m=p,ap11(modp)

推论:若   p   \,p\, p为质数,则对一切整数   a   \,a\, a,有   a p ≡ a  ⁣ ⁣ ( m o d p )   \,a^p \equiv a \!\! \pmod{p}\, apa(modp)

证 : 若   ( a   , p ) = 1   , 由 费 马 小 定 理 得   a p − 1 ≡ 1  ⁣ ⁣ ( m o d p )   , 所 以   a p ≡ a  ⁣ ⁣ ( m o d p )   , 若   ( a   , p ) = p   , 即   p ∣ a   , 此 时 显 然 有   a p ≡ 0 ≡ a  ⁣ ⁣ ( m o d p )   证:若\,(a\,,p)=1\,,由费马小定理得\,a^{p-1} \equiv 1 \!\! \pmod{p}\,,所以\,a^p \equiv a \!\! \pmod{p}\,,若\,(a\,,p)=p\,,即\,p \mid a\,,此时显然有\,a^p \equiv 0 \equiv a \!\! \pmod{p}\, (a,p)=1,ap11(modp),apa(modp),(a,p)=p,pa,ap0a(modp)

遗憾的是,费马小定理的逆不成立,即当   a m − 1 ≡ 1  ⁣ ⁣ ( m o d m )   \,a^{m-1} \equiv 1 \!\! \pmod{m}\, am11(modm)时,   m   \,m\, m不一定是质数。

将满足   2 n ≡ 2  ⁣ ⁣ ( m o d n )   \,2^n \equiv 2 \!\! \pmod{n}\, 2n2(modn)的合数称为伪质数(例如   n = 341   \,n=341\, n=341就是伪质数),把   a n ≡ a  ⁣ ⁣ ( m o d n )   \,a^n \equiv a \!\! \pmod{n}\, ana(modn)称为绝对伪质数。
  n = q 1 q 2 ⋯ q k   ( q 1 , ⋯   , q k   \,n=q_1q_2\cdots q_k\,(q_1,\cdots,q_k\, n=q1q2qk(q1,,qk是两两不同的质数),且   ( q i − 1 ) ∣ ( n − 1 )   ( 1 ≤ i ≤ k )   \,(q_i-1) \mid (n-1)\,(1 \le i \le k)\, (qi1)(n1)(1ik),则   n   \,n\, n是绝对伪质数。

证 : 设   n − 1 = ( q i − 1 ) d i   , 由 费 马 小 定 理 知   a q i − 1 ≡ 1  ⁣ ⁣ ( m o d q i )   , 则 有   a ( q i − 1 ) d i ≡ 1  ⁣ ⁣ ( m o d q i )   , 即   a n − 1 ≡ 1  ⁣ ⁣ ( m o d q i )   , 即   a n ≡ a  ⁣ ⁣ ( m o d q i )   , 于 是   a n ≡ a  ⁣ ⁣ ( m o d [   q 1 , q 2 , ⋯   , q k   ] )   , 即   a n ≡ a  ⁣ ⁣ ( m o d p 1 p 2 ⋯ p k )   , 也 即   a n ≡ a  ⁣ ⁣ ( m o d n )   证:设\,n-1=(q_i-1)d_i\,,由费马小定理知\,a^{q_i-1} \equiv 1 \!\! \pmod{q_i}\,,则有\,a^{(q_i-1)d_i} \equiv 1 \!\! \pmod{q_i}\,,即\,a^{n-1} \equiv 1 \!\! \pmod{q_i}\,,即\,a^n \equiv a \!\! \pmod{q_i}\,,于是\,a^n \equiv a \!\! \pmod{[\,q_1,q_2,\cdots,q_k\,]}\,,即\,a^n \equiv a \!\! \pmod{p_1p_2\cdots p_k}\,,也即\,a^n \equiv a \!\! \pmod{n}\, n1=(qi1)di,aqi11(modqi),a(qi1)di1(modqi),an11(modqi),ana(modqi),ana(mod[q1,q2,,qk]),ana(modp1p2pk),ana(modn)

  n   \,n\, n是一个伪质数,则   2 n − 1   \,2^n-1\, 2n1也是一个伪质数。

证 : 由 于   n   为 合 数 , 令   n = a b   ,   1 < a < n   , 则   2 n − 1 = 2 a b − 1 = ( 2 a ) b − 1 b = ( 2 a − 1 ) [   ( 2 a ) b − 1 + ( 2 a ) b − 2 + ⋯ + 1 b − 1   ]   , 由 于   2 a − 1   是   2 n − 1   的 真 因 数 ,   2 n − 1   是 合 数 。 另 外 由 于   n ∣ 2 n − 2   , 设   2 n − 2 = d n   , 于 是   2 2 n − 1 − 2 = 2 ( 2 2 n − 2 − 1 ) = 2 ( 2 d n − 1 ) = 2 ( ( 2 n ) d − 1 )   , 而   2 n − 1 ∣ ( 2 n ) d − 1   , 因 此   2 n − 1 ∣ 2 2 n − 1 − 2   , 即   2 2 n − 1 ≡ 2  ⁣ ⁣ ( m o d 2 n − 1 )   , 故 命 题 成 立 。 证:由于\,n\,为合数,令\,n=ab\,,\,1 \lt a \lt n\,,则\,2^n-1=2^{ab}-1=(2^a)^b-1^b=(2^a-1)[\,(2^a)^{b-1}+(2^a)^{b-2}+\cdots+1^{b-1}\,]\,,由于\,2^a-1\,是\,2^n-1\,的真因数,\,2^n-1\,是合数。另外由于\,n \mid 2^n-2\,,设\,2^n-2=dn\,,于是\,2^{2^n-1}-2=2(2^{2^n-2}-1)=2(2^{dn}-1)=2((2^n)^d-1)\,,而\,2^n-1 \mid (2^n)^d-1\,,因此\,2^n-1 \mid 2^{2^n-1}-2\,,即\,2^{2^n-1} \equiv 2 \!\! \pmod{2^n-1}\,,故命题成立。 n,n=ab,1<a<n,2n1=2ab1=(2a)b1b=(2a1)[(2a)b1+(2a)b2++1b1],2a12n1,2n1n2n2,2n2=dn,22n12=2(22n21)=2(2dn1)=2((2n)d1),2n1(2n)d1,2n122n12,22n12(mod2n1),

但在某些特殊情况下,费马小定理的逆是成立的。若   a m − 1 ≡ 1  ⁣ ⁣ ( m o d m )   \,a^{m-1} \equiv 1 \!\! \pmod{m}\, am11(modm)   ( a   , m ) = 1   \,(a\,,m)=1\, (a,m)=1,且对于   m − 1   \,m-1\, m1的任一真因数   n   \,n\, n,有   a n ≢ 1  ⁣ ⁣ ( m o d m )   \,a^n \not \equiv 1 \!\! \pmod{m}\, an1(modm),则   m   \,m\, m是质数。

证 : 根 据 已 知 条 件 知   m − 1   是 满 足   a x ≡ 1  ⁣ ⁣ ( m o d m )   的 最 小 正 整 数 , 由 欧 拉 定 理 , 知   a φ ( m ) ≡ 1  ⁣ ⁣ ( m o d m )   , 由 带 余 除 法 知 , φ ( m ) = ( m − 1 ) q + r   ( 0 ≤ r < m − 1 )   , 因 为   a φ ( m ) = a ( m − 1 ) q + r = ( a m − 1 ) q ⋅ a r   , 所 以   a r ≡ 1  ⁣ ⁣ ( m o d m )   , 由   m − 1   的 最 小 性 , 得   r = 0   , 从 而   φ ( m ) = ( m − 1 ) q   , 则   φ ( m ) ≥ m − 1   , 但 对 于 任 何 大 于   1   的   m   , 都 有   φ ( m ) ≤ m − 1   , 因 此   φ ( m ) = m − 1   , 于 是   m   为 质 数 。 证:根据已知条件知\,m-1\,是满足\,a^x \equiv 1 \!\! \pmod{m}\,的最小正整数,由欧拉定理,知\,a^{\varphi(m)} \equiv 1 \!\! \pmod{m}\,,由带余除法知,\varphi(m)=(m-1)q+r\,(0 \le r \lt m-1)\,,因为\,a^{\varphi(m)}=a^{(m-1)q+r}=(a^{m-1})^q\cdot a^r\,,所以\,a^r \equiv 1 \!\! \pmod{m}\,,由\,m-1\,的最小性,得\,r=0\,,从而\,\varphi(m)=(m-1)q\,,则\,\varphi(m) \ge m-1\,,但对于任何大于\,1\,的\,m\,,都有\,\varphi(m) \le m-1\,,因此\,\varphi(m)=m-1\,,于是\,m\,为质数。 m1ax1(modm),,aφ(m)1(modm),,φ(m)=(m1)q+r(0r<m1),aφ(m)=a(m1)q+r=(am1)qar,ar1(modm),m1,r=0,φ(m)=(m1)q,φ(m)m1,1m,φ(m)m1,φ(m)=m1,m

Note : 参考博客《初等数论》:最大公因数与最小公倍数的例题1-4,知   a , m , n   \,a,m,n\, a,m,n为整数时,   ( a m − 1   , a n − 1 ) = a ( m , n ) − 1   \,(a^m-1\,,a^n-1)=a^{(m,n)}-1\, (am1,an1)=a(m,n)1,因此如果   m − 1   \,m-1\, m1不是满足   a x ≡ 1  ⁣ ⁣ ( m o d m )   \,a^x \equiv 1 \!\! \pmod{m}\, ax1(modm)的最小正整数(实际上这里有所质疑是对的,因为   a n ≢ 1  ⁣ ⁣ ( m o d m )   \,a^n \not \equiv 1 \!\! \pmod{m}\, an1(modm)并不能推出   ( a n ) k ≢ 1  ⁣ ⁣ ( m o d m )   \,(a^n)^k \not \equiv 1 \!\! \pmod{m}\, (an)k1(modm)),则存在   t < m − 1   \,t \lt m-1\, t<m1满足,不妨先设   ( m − 1   , t ) = n > 1   \,(m-1\,,t)=n \gt 1\, (m1,t)=n>1,可知   a n ≡ 1  ⁣ ⁣ ( m o d m )   \,a^n \equiv 1 \!\! \pmod{m}\, an1(modm),产生了矛盾;而如果   ( m − 1   , t ) = 1   , 则 有   a ≡ 1  ⁣ ⁣ ( m o d m )   \,(m-1\,,t)=1\,,则有\,a \equiv 1 \!\! \pmod{m}\, (m1,t)=1,a1(modm),则   a n ≡ 1  ⁣ ⁣ ( m o d m )   \,a^n \equiv 1 \!\! \pmod{m}\, an1(modm),也产生矛盾;综上所述,   m − 1   \,m-1\, m1就是满足方程的最小正整数。

例题

  • 如果今天是星期一,问从今天起再过   1 0 1 0 10   \,10^{10^{10}}\, 101010天是星期几?
    提 示 : 因 为   1 0 10 ≡ 4 10 ≡ ( 4 2 ) 5 ≡ 4 5 ≡ 4 4 × 4 ≡ 4  ⁣ ⁣ ( m o d 6 )   , 所 以   1 0 10 = 6 k + 4   , 由 费 马 小 定 理 知   1 0 6 ≡ 1  ⁣ ⁣ ( m o d 7 )   , 故   1 0 1 0 10 = 1 0 6 k + 4 ≡ ( 1 0 6 ) k ⋅ 1 0 4 ≡ 1 0 4 ≡ 3 4 ≡ 4  ⁣ ⁣ ( m o d 7 )   , 故 答 案 为 星 期 五 。 提示:因为\,10^{10} \equiv 4^{10} \equiv (4^2)^5 \equiv 4^5 \equiv 4^4 \times 4 \equiv 4\!\! \pmod{6}\,,所以\,10^{10} = 6k+4\,,由费马小定理知\,10^6 \equiv 1 \!\! \pmod{7}\,,故\,10^{10^{10}} = 10^{6k+4} \equiv (10^6)^k \cdot 10^4 \equiv 10^4 \equiv 3^4 \equiv 4 \!\! \pmod{7}\,,故答案为星期五。 1010410(42)54544×44(mod6),1010=6k+4,1061(mod7),101010=106k+4(106)k104104344(mod7),
  • 如果今天是星期日,问从今天起再过   3 2008   \,3^{2008}\, 32008天是星期几?
    提 示 : 参 考 上 一 题 提示:参考上一题
  • 如果今天是星期一,问从今天起再过   1 0 1 0 1 0 10   \,10^{10^{10^{10}}}\, 10101010天是星期几?
    提 示 : 参 考 上 上 一 题 ,   1 0 1 0 10 = 1 0 6 k + 4   , 由 于   5 2 ≡ 1  ⁣ ⁣ ( m o d 6 )   ,   5 6 k + 4 ≡ ( 5 2 ) 3 k + 2 ≡ 1  ⁣ ⁣ ( m o d 6 )   , 又   2 2 ≡ 1  ⁣ ⁣ ( m o d 3 )   ,   2 6 k + 2 = ( 2 2 ) 3 k + 1 ≡ 1  ⁣ ⁣ ( m o d 3 )   ,   2 6 k + 3 = 2 6 k + 2 ⋅ 2 ≡ 2  ⁣ ⁣ ( m o d 3 )   , 于 是   2 6 k + 4 ≡ 4  ⁣ ⁣ ( m o d 6 )   , 则   1 0 6 k + 4 = 5 6 k + 4 ⋅ 2 6 k + 4 ≡ 4  ⁣ ⁣ ( m o d 6 )   提示:参考上上一题,\,10^{10^{10}}=10^{6k+4}\,,由于\,5^2 \equiv 1 \!\! \pmod{6}\,,\,5^{6k+4} \equiv (5^2)^{3k+2} \equiv 1 \!\! \pmod{6}\,,又\,2^2 \equiv 1 \!\! \pmod{3}\,,\,2^{6k+2} = (2^2)^{3k+1} \equiv 1 \!\! \pmod{3}\,,\,2^{6k+3} = 2^{6k+2} \cdot 2 \equiv 2 \!\! \pmod{3}\,,于是\,2^{6k+4} \equiv 4 \!\! \pmod{6}\,,则\,10^{6k+4} = 5^{6k+4}\cdot 2^{6k+4} \equiv 4 \!\! \pmod{6}\, ,101010=106k+4,521(mod6),56k+4(52)3k+21(mod6),221(mod3),26k+2=(22)3k+11(mod3),26k+3=26k+222(mod3),26k+44(mod6),106k+4=56k+426k+44(mod6)

Note : 事实上,当   a = 1   \,a=1\, a=1时,   4 a ≡ 4  ⁣ ⁣ ( m o d 6 )   \,4^a \equiv 4 \!\! \pmod{6}\, 4a4(mod6),当   a ≥ 2   \,a \ge 2\, a2时,由   4 a − 4 = 4 ⋅ ( 4 a − 1 − 1 ) = 4 ( 4 − 1 ) ( 4 a − 2 + 4 a − 3 + ⋯ + 1 ) = 12 q   ( q   为 某 一 正 整 数 )   \,4^a-4=4 \cdot (4^{a-1}-1)=4(4-1)(4^{a-2}+4^{a-3}+\cdots+1)=12q\,(q\,为某一正整数)\, 4a4=4(4a11)=4(41)(4a2+4a3++1)=12q(q),可知   6 ∣ 4 q − 4   \,6 \mid 4^q-4\, 64q4,即   4 a ≡ 4  ⁣ ⁣ ( m o d 6 )   \,4^a \equiv 4 \!\! \pmod{6}\, 4a4(mod6),因此   1 0 a ≡ 4 a ≡ 4  ⁣ ⁣ ( m o d 6 )   \,10^a \equiv 4^a \equiv 4 \!\! \pmod{6}\, 10a4a4(mod6),从而   1 0 1 0 a ≡ 4  ⁣ ⁣ ( m o d 7 )   \,10^{10^a} \equiv 4 \!\! \pmod{7}\, 1010a4(mod7)(   a   \,a\, a为整数,且   a ≥ 1   ) \,a \ge 1\,) a1)

  •   n   \,n\, n为正整数,试证:   7 ∣ ( n 7 + 6 !   n )   \,7 \mid (n^7+6!\,n)\, 7(n7+6!n)
    提 示 : 7 ∣ n 7 − n   ,   6 ! ≡ − 1  ⁣ ⁣ ( m o d 7 )   提示:7 \mid n^7-n\,,\,6! \equiv -1 \!\! \pmod{7}\, 7n7n,6!1(mod7)
  • 试证:若   p , q   \,p,q\, p,q均为奇质数,且   ( p   , q − 1 ) = 1   ,   ( q   , p − 1 ) = 1   \,(p\,,q-1)=1\,,\,(q\,,p-1)=1\, (p,q1)=1,(q,p1)=1,则   ( p − 1 ) q − 1 ≡ ( q − 1 ) p − 1  ⁣ ⁣ ( m o d p q )   \,(p-1)^{q-1} \equiv (q-1)^{p-1} \!\! \pmod{pq}\, (p1)q1(q1)p1(modpq)
    提 示 : 当   p = q   时 , 显 然 成 立 ; 当   p ≠ q   时 , 显 然 有   ( p − 1 ) q − 1 ≡ 1  ⁣ ⁣ ( m o d q )   ,   ( p − 1 ) q − 1 ≡ ( − 1 ) q − 1 ≡ 1  ⁣ ⁣ ( m o d p )   , 又   ( p   , q ) = 1   , 因 此   ( p − 1 ) q − 1 ≡ 1  ⁣ ⁣ ( m o d p q )   , 同 理 可 知   ( q − 1 ) p − 1 ≡ 1  ⁣ ⁣ ( m o d p q )   , 可 知 命 题 成 立 。 提示:当\,p = q\,时,显然成立;当\,p \ne q\,时,显然有\,(p-1)^{q-1} \equiv 1 \!\! \pmod{q}\,,\,(p-1)^{q-1} \equiv (-1)^{q-1} \equiv 1 \!\! \pmod{p}\,,又\,(p\,,q)=1\,,因此\,(p-1)^{q-1} \equiv 1 \!\! \pmod{pq}\,,同理可知\,(q-1)^{p-1} \equiv 1 \!\! \pmod{pq}\,,可知命题成立。 p=q,;p=q,(p1)q11(modq),(p1)q1(1)q11(modp),(p,q)=1,(p1)q11(modpq),(q1)p11(modpq),
  •   ( m   , n ) = 1   \,(m\,,n)=1\, (m,n)=1,试证:   m φ ( n ) + n φ ( m ) ≡ 1  ⁣ ⁣ ( m o d m n )   \,m^{\varphi(n)}+n^{\varphi(m)} \equiv 1 \!\! \pmod{mn}\, mφ(n)+nφ(m)1(modmn)
    提 示 : 由   m φ ( n ) ≡ 1  ⁣ ⁣ ( m o d n )   ,   n φ ( m ) ≡ 0  ⁣ ⁣ ( m o d n )   , 可 知   m φ ( n ) + n φ ( m ) ≡ 1  ⁣ ⁣ ( m o d n )   , 同 理 知   n φ ( m ) + m φ ( n ) ≡ 1  ⁣ ⁣ ( m o d m )   , 又   ( m   , n ) = 1   , 因 此   m φ ( n ) + n φ ( m ) ≡ 1  ⁣ ⁣ ( m o d m n )   提示:由\,m^{\varphi(n)} \equiv 1 \!\! \pmod{n}\,,\,n^{\varphi(m)} \equiv 0 \!\! \pmod{n}\,,可知\,m^{\varphi(n)}+n^{\varphi(m)} \equiv 1 \!\! \pmod{n}\,,同理知\,n^{\varphi(m)}+m^{\varphi(n)} \equiv 1 \!\! \pmod{m}\,,又\,(m\,,n)=1\,,因此\,m^{\varphi(n)}+n^{\varphi(m)} \equiv 1 \!\! \pmod{mn}\, mφ(n)1(modn),nφ(m)0(modn),mφ(n)+nφ(m)1(modn),nφ(m)+mφ(n)1(modm),(m,n)=1,mφ(n)+nφ(m)1(modmn)
  •   m = p 1 k 1 ⋯ p s k s   \,m=p_1^{k_1}\cdots p_s^{k_s}\, m=p1k1psks(   p 1 , ⋯   , p s   \,p_1,\cdots,p_s\, p1,,ps是不同的质数),   k = max ⁡ { k 1 , ⋯   , k s }   \,k=\max\{k_1,\cdots,k_s\}\, k=max{k1,,ks},试证:对任意整数   a   \,a\, a,有   a k + φ ( m ) ≡ a k  ⁣ ⁣ ( m o d m )   \,a^{k+\varphi(m)} \equiv a^k \!\! \pmod{m}\, ak+φ(m)ak(modm)
    提 示 : ( 1 )   当   ( a   , m ) = 1   时 , 命 题 显 然 成 立 ; 当   ( a   , m ) ≠ 1   时 , ( 2 )   设   a = p i   ( 1 ≤ i ≤ s )   ,   n = m a k i   ( 1 ≤ k i ≤ s )   , 因 为   ( a   , n ) = 1   , 显 然 有   φ ( m ) = φ ( a k i ) φ ( n )   , 由 于   a φ ( n ) ≡ 1  ⁣ ⁣ ( m o d n )   , 知   a φ ( m ) = ( a φ ( n ) ) φ ( a k i ) ≡ 1 φ ( a k i ) ≡ 1  ⁣ ⁣ ( m o d n )   , 两 边 同 时 乘 以   a k   , 得   a k + φ ( m ) ≡ a k  ⁣ ⁣ ( m o d n )   , 由 于   k = max ⁡ { k 1 , ⋯   , k s }   , 显 然 有   a k + φ ( m ) ≡ 0 ≡ a k  ⁣ ⁣ ( m o d a k i )   , 由 于   ( a k i   , n ) = 1   , 因 此   a k + φ ( m ) ≡ a k  ⁣ ⁣ ( m o d m )   ; ( 3 )   在   ( 2 )   的 基 础 上 , 当   a = p i t i   ( t i ∈ Z )   , 由 于   p i k + φ ( m ) ≡ p i k  ⁣ ⁣ ( m o d m )   , 得   ( p i k + φ ( m ) ) t i = ( p i t i ) k + φ ( m ) ≡ ( p i k ) t i = ( p i t i ) k  ⁣ ⁣ ( m o d m )   也 有   a k + φ ( m ) ≡ a k  ⁣ ⁣ ( m o d m )   ; 综 合   ( 1 ) , ( 3 )   , 叠 乘 可 知 命 题 成 立 。 提示:(1)\,当\,(a\,,m)=1\,时,命题显然成立;当\,(a\,,m) \ne 1\,时,(2)\,设\,a=p_i\,(1 \le i \le s)\,,\,n=\dfrac{m}{a^{k_i}}\,(1 \le k_i \le s)\,,因为\,(a\,,n)=1\,,显然有\,\varphi(m)=\varphi(a^{k_i})\varphi(n)\,,由于\,a^{\varphi(n)} \equiv 1 \!\! \pmod{n}\,,知\,a^{\varphi(m)} = (a^{\varphi(n)})^{\varphi(a^{k_i})} \equiv 1^{\varphi(a^{k_i})} \equiv 1 \!\! \pmod{n}\,,两边同时乘以\,a^k\,,得\,a^{k+\varphi(m)} \equiv a^k \!\! \pmod{n}\,,由于\,k=\max\{k_1,\cdots,k_s\}\,,显然有\,a^{k+\varphi(m)} \equiv 0 \equiv a^k \!\! \pmod{a^{k_i}}\,,由于\,(a^{k_i}\,,n)=1\,,因此\,a^{k+\varphi(m)} \equiv a^k \!\! \pmod{m}\,;(3)\,在\,(2)\,的基础上,当\,a=p_i^{t_i}\,(t_i \in Z)\,,由于\,p_i^{k+\varphi(m)} \equiv p_i^k \!\! \pmod{m}\,,得\,(p_i^{k+\varphi(m)})^{t_i} = (p_i^{t_i})^{k+\varphi(m)} \equiv (p_i^k)^{t_i} = (p_i^{t_i})^k \!\! \pmod{m}\,也有\,a^{k+\varphi(m)} \equiv a^k \!\! \pmod{m}\,;综合\,(1),(3)\,,叠乘可知命题成立。 (1)(a,m)=1,;(a,m)=1,(2)a=pi(1is),n=akim(1kis),(a,n)=1,φ(m)=φ(aki)φ(n),aφ(n)1(modn),aφ(m)=(aφ(n))φ(aki)1φ(aki)1(modn),ak,ak+φ(m)ak(modn),k=max{k1,,ks},ak+φ(m)0ak(modaki),(aki,n)=1,ak+φ(m)ak(modm);(3)(2),a=piti(tiZ),pik+φ(m)pik(modm),(pik+φ(m))ti=(piti)k+φ(m)(pik)ti=(piti)k(modm)ak+φ(m)ak(modm);(1),(3),
  •   p   \,p\, p为奇质数,证明:当且仅当   p ≡ 1  ⁣ ⁣ ( m o d 4 )    ( 1 )   \,p \equiv 1 \!\! \pmod{4} \,\,(1)\, p1(mod4)(1)时,方程   x 2 ≡ − 1  ⁣ ⁣ ( m o d p )    ( 2 )   \,x^2 \equiv -1 \!\! \pmod{p} \,\,(2)\, x21(modp)(2)有解。
    证 : ( 1 )   成 立 时 , 由 威 尔 逊 定 理 知   − 1 ≡ ( p − 1 ) ! = ( p − 1 ) ( p − 2 ) ⋯ ( p + 1 2 ) ( p − 1 2 ) ⋯ 2 ⋅ 1 ≡ ( − 1 ) p − 1 2 ( ( p − 1 2 ) ! ) 2 = ( ( p − 1 2 ) ! ) 2  ⁣ ⁣ ( m o d p )   , 所 以   ( 2 )   有 解 ;   ( 1 )   不 成 立 时 ,   p ≡ − 1  ⁣ ⁣ ( m o d 4 )   , 假 设 有   x   使 得   ( 2 )   成 立 , 则   ( x 2 ) p − 1 2 ≡ ( − 1 ) p − 1 2 = − 1  ⁣ ⁣ ( m o d p )   , 但 由 费 马 小 定 理 得   ( x 2 ) p − 1 2 = x p − 1 ≡ 1  ⁣ ⁣ ( m o d p )   , 矛 盾 , 因 此   ( 2 )   无 解 。 证:(1)\,成立时,由威尔逊定理知\,-1 \equiv (p-1)! = (p-1)(p-2)\cdots(\dfrac{p+1}{2})(\dfrac{p-1}{2})\cdots2\cdot1 \equiv (-1)^{\frac{p-1}{2}}((\dfrac{p-1}{2})!)^2 = ((\dfrac{p-1}{2})!)^2 \!\! \pmod{p}\,,所以\,(2)\,有解;\,(1)\,不成立时,\,p \equiv -1 \!\! \pmod{4}\,,假设有\,x\,使得\,(2)\,成立,则\,(x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}}=-1 \!\! \pmod{p}\,,但由费马小定理得\,(x^2)^{\frac{p-1}{2}}=x^{p-1} \equiv 1 \!\! \pmod{p}\,,矛盾,因此\,(2)\,无解。 (1),1(p1)!=(p1)(p2)(2p+1)(2p1)21(1)2p1((2p1)!)2=((2p1)!)2(modp),(2);(1),p1(mod4),x使(2),(x2)2p1(1)2p1=1(modp),(x2)2p1=xp11(modp),,(2)
  •   p   \,p\, p为奇质数,证明:   p 2 p + 1 p 2 + 1   \,\dfrac{p^{2p}+1}{p^2+1}\, p2+1p2p+1的任一正因数模   4 p   \,4p\, 4p   1   \,1\, 1
    证 : 只 需 证 其 任 一 质 因 数   q   满 足   q ≡ 1  ⁣ ⁣ ( m o d 4 p )   ( 1 )   。 因 为   q ∣ p 2 p + 1   , 知   q ≠ p   , 且   p 2 p ≡ − 1  ⁣ ⁣ ( m o d q )   ( 2 )   ,   p 4 p ≡ 1  ⁣ ⁣ ( m o d q )   ( 3 )   , 又   ( p   , q ) = 1   , 由 费 马 小 定 理 知   p q − 1 ≡ 1  ⁣ ⁣ ( m o d q )   ( 4 )   , 设   ( 4 p   , q − 1 ) = r   , 则   p r ≡ 1  ⁣ ⁣ ( m o d q )   ( 5 )   ,   r   的 可 能 取 值 为 { 1 , 4 p , 2 , 2 p , 4 , p }   , 由 于   ( 2 )   ,   r = 4   或   4 p   。 若   r = 4   , 则   p 4 − 1 = ( p 2 − 1 ) ( p 2 + 1 ) ≡ 0  ⁣ ⁣ ( m o d q )   , 由   ( 2 )   知   p 2 ≢ 1  ⁣ ⁣ ( m o d q )   , 因 此   p 2 ≡ − 1  ⁣ ⁣ ( m o d q )   , 而   0 ≡ p 2 p + 1 p 2 + 1 = ( p 2 ) p − 1 − ( p 2 ) p − 2 + ⋯ + p 4 − p 2 + 1 ≡ 2 ⋅ p − 1 2 + 1 = p  ⁣ ⁣ ( m o d q )   , 从 而   q ≠ p   , 矛 盾 。 所 以   r = 4 p   ,   4 p ∣ q − 1   , 即   ( 1 )   成 立 。 证:只需证其任一质因数\,q\,满足\,q \equiv 1 \!\! \pmod{4p}\,(1)\,。因为\,q \mid p^{2p}+1\,,知\,q \ne p\,,且\,p^{2p} \equiv -1 \!\! \pmod{q}\,(2)\,,\,p^{4p} \equiv 1 \!\! \pmod{q}\,(3)\,,又\,(p\,,q)=1\,,由费马小定理知\,p^{q-1} \equiv 1 \!\! \pmod{q}\,(4)\,,设\,(4p\,,q-1)=r\,,则\,p^r \equiv 1 \!\! \pmod{q}\,(5)\,,\,r\,的可能取值为\{1,4p,2,2p,4,p\}\,,由于\,(2)\,,\,r=4\,或\,4p\,。若\,r=4\,,则\,p^4 -1 = (p^2-1)(p^2+1) \equiv 0 \!\! \pmod{q}\,,由\,(2)\,知\,p^2 \not \equiv 1 \!\! \pmod{q}\,,因此\,p^2 \equiv -1 \!\! \pmod{q}\,,而\,0 \equiv \dfrac{p^{2p}+1}{p^2+1}=(p^2)^{p-1}-(p^2)^{p-2}+\cdots+p^4-p^2+1 \equiv 2\cdot \dfrac{p-1}{2}+1 = p \!\! \pmod{q}\,,从而\,q \ne p\,,矛盾。所以\,r=4p\,,\,4p \mid q-1\,,即\,(1)\,成立。 qq1(mod4p)(1)qp2p+1,q=p,p2p1(modq)(2),p4p1(modq)(3),(p,q)=1,pq11(modq)(4),(4p,q1)=r,pr1(modq)(5),r{1,4p,2,2p,4,p},(2),r=44pr=4,p41=(p21)(p2+1)0(modq),(2)p21(modq),p21(modq),0p2+1p2p+1=(p2)p1(p2)p2++p4p2+122p1+1=p(modq),q=p,r=4p,4pq1,(1)
  •   p   \,p\, p为质数,   m , n   \,m,n\, m,n都是大于   1   \,1\, 1的整数,已知   n ∣ m p ( n − 1 ) − 1   \,n \mid m^{p(n-1)}-1\, nmp(n1)1,证明:   ( m n − 1 − 1   , n ) > 1   \,(m^{n-1}-1\,,n) \gt 1\, (mn11,n)>1
    证 : 设   ( m n − 1   , n ) = 1   , 又 设   q   为   n   的 质 因 数 , 则   m n − 1 ≢ 1  ⁣ ⁣ ( m o d q )   ( 1 )   , 而   m p ( n − 1 ) ≡ 1  ⁣ ⁣ ( m o d q )   , 可 知   q ∤ m   , 由 费 马 小 定 理 知   m q − 1 ≡ 1  ⁣ ⁣ ( m o d q )   , 设   d   为 使 得   m x ≡ 1  ⁣ ⁣ ( m o d q )   的 最 小 正 整 数 , 则   d ∣ ( p ( n − 1 )   , q − 1 )   , 由   ( 1 )   知   d ∤ ( n − 1 )   , 因 此   d ∣ p   , 若   d = 1   , 则   m n − 1 ≡ 1  ⁣ ⁣ ( m o d q )   , 与   ( 1 )   矛 盾 , 所 以   d = p   , 于 是 有   p 1 ∣ ∣ p ( n − 1 )   ( 指   p ( n − 1 )   的 标 准 分 解 式 中   p   的 次 数 为   1   )   。 对 所 有 的   q ∣ n   , 均 可 设   q = k p + 1   , 于 是   n = ∏ q = ∏ ( k p + 1 ) ≡ 1  ⁣ ⁣ ( m o d p )   , 这 与   p = d ∤ ( n − 1 )   矛 盾 , 所 以 命 题 成 立 。 证:设\,(m^{n-1}\,,n)=1\,,又设\,q\,为\,n\,的质因数,则\,m^{n-1} \not \equiv 1 \!\! \pmod{q}\,(1)\,,而\,m^{p(n-1)} \equiv 1 \!\! \pmod{q}\,,可知\,q \nmid m\,,由费马小定理知\,m^{q-1} \equiv 1 \!\! \pmod{q}\,,设\,d\,为使得\,m^x \equiv 1 \!\! \pmod{q}\,的最小正整数,则\,d \mid (p(n-1)\,,q-1)\,,由\,(1)\,知\,d \nmid (n-1)\,,因此\,d \mid p\,,若\,d=1\,,则\,m^{n-1} \equiv 1 \!\! \pmod{q}\,,与\,(1)\,矛盾,所以\,d=p\,,于是有\,p^1 \mid\mid p(n-1)\,(指\,p(n-1)\,的标准分解式中\,p\,的次数为\,1\,)\,。对所有的\,q \mid n\,,均可设\,q=kp+1\,,于是\,n = \prod q=\prod (kp+1) \equiv 1 \!\! \pmod{p}\,,这与\,p=d \nmid (n-1)\,矛盾,所以命题成立。 (mn1,n)=1,qn,mn11(modq)(1),mp(n1)1(modq),qm,mq11(modq),d使mx1(modq),d(p(n1),q1),(1)d(n1),dp,d=1,mn11(modq),(1),d=p,p1p(n1)(p(n1)p1)qn,q=kp+1,n=q=(kp+1)1(modp),p=d(n1),

常用结论:若   ( m   , q ) = 1   \,(m\,,q)=1\, (m,q)=1,设   d   \,d\, d为使得   m x ≡ 1  ⁣ ⁣ ( m o d q )   \,m^x \equiv 1 \!\! \pmod{q}\, mx1(modq)的最小正整数,若有另一整数   c   \,c\, c使得   m c ≡ 1  ⁣ ⁣ ( m o d q )   \,m^c \equiv 1 \!\! \pmod{q}\, mc1(modq),则   d ∣ c   \,d \mid c\, dc。(设   c = k d + r   ,   0 ≤ r < d   \,c=kd+r\,,\,0 \le r \lt d\, c=kd+r,0r<d,则   m r ≡ m c − k d ≡ 1  ⁣ ⁣ ( m o d q )   \,m^r \equiv m^{c-kd} \equiv 1 \!\! \pmod{q}\, mrmckd1(modq),而   d   \,d\, d为使得模式成立的最小正整数,因此   r = 0   \,r=0\, r=0 )

  • 质数   p > 5   \,p \gt 5\, p>5,证明:   p ∣ f p + 1 ( f p + 1 − 1 )   \,p \mid f_{p+1}(f_{p+1}-1)\, pfp+1(fp+11),其中   f 1 = f 2 = 1   ,   f n + 2 = f n + 1 + f n   \,f_1=f_2=1\,,\,f_{n+2}=f_{n+1}+f_{n}\, f1=f2=1,fn+2=fn+1+fn,是斐波那契数列。
    证 : 通 过 数 学 归 纳 法 证 明 或 者 特 征 根 法 求 解 可 知   f n = 1 5 ( ( 5 + 1 2 ) n − ( 1 − 5 2 ) n ) = 1 2 n − 1 ∑ k 奇 C n k ( 5 ) k − 1   又 因 为   C p + 1 k = p + 1 k C p k − 1 = ( p + 1 ) p k ( k − 1 ) C p − 1 k − 2   , 则   当   3 ≤ k ≤ p − 2   , 有   p ∣ C p + 1 k   , 从 而 得   2 p f p + 1 ≡ C p + 1 1 + C p + 1 p ( 5 ) p − 1 ≡ ( p + 1 ) ( 5 p − 1 2 + 1 ) ≡ 5 p − 1 2 + 1  ⁣ ⁣ ( m o d p )   , 而   ( 2   , p ) = 1   ,   ( 5   , p ) = 1   , 故 由 费 马 小 定 理 知   2 f p + 1 ≡ 5 p − 1 2 + 1  ⁣ ⁣ ( m o d p )   ,   ( 5 p − 1 2 + 1 ) ( 5 p − 1 2 − 1 ) = 5 p − 1 − 1 ≡ 0  ⁣ ⁣ ( m o d p )   , 故   5 p − 1 2 ≡ 1   或 − 1  ⁣ ⁣ ( m o d p )   ,   2 f p + 1 ≡ 2   或   0  ⁣ ⁣ ( m o d p )   , 则   f p + 1 ≡ 1   或   0  ⁣ ⁣ ( m o d p )   , 即   p ∣ f p + 1 ( f p + 1 − 1 )   证:通过数学归纳法证明或者特征根法求解可知\\\,\begin{aligned}f_n=\dfrac{1}{\sqrt{5}}((\dfrac{\sqrt{5}+1}{2})^n-(\dfrac{1-\sqrt{5}}{2})^n)=\dfrac{1}{2^{n-1}}\sum_{k奇}C_n^k(\sqrt{5})^{k-1}\end{aligned}\,\\又因为\,C_{p+1}^k = \dfrac{p+1}{k}C_p^{k-1}=\dfrac{(p+1)p}{k(k-1)}C_{p-1}^{k-2}\,,则\,当\,3 \le k \le p-2\,,有\,p \mid C_{p+1}^k\,,从而得\,2^pf_{p+1} \equiv C_{p+1}^1+C_{p+1}^{p}(\sqrt{5})^{p-1} \equiv(p+1)(5^{\frac{p-1}{2}}+1) \equiv 5^{\frac{p-1}{2}}+1\!\! \pmod{p}\,,而\,(2\,,p)=1\,,\,(5\,,p)=1\,,故由费马小定理知\,2f_{p+1} \equiv 5^{\frac{p-1}{2}}+1\!\! \pmod{p}\,,\,(5^{\frac{p-1}{2}}+1)(5^{\frac{p-1}{2}}-1)=5^{p-1}-1 \equiv 0 \!\! \pmod{p}\,,故\,5^{\frac{p-1}{2}} \equiv 1 \,或-1\!\! \pmod{p}\,,\,2f_{p+1} \equiv 2\,或\,0 \!\! \pmod{p}\,,则\,f_{p+1} \equiv 1\,或\,0 \!\! \pmod{p}\,,即\,p \mid f_{p+1}(f_{p+1}-1)\, fn=5 1((25 +1)n(215 )n)=2n11kCnk(5 )k1Cp+1k=kp+1Cpk1=k(k1)(p+1)pCp1k2,3kp2,pCp+1k,2pfp+1Cp+11+Cp+1p(5 )p1(p+1)(52p1+1)52p1+1(modp),(2,p)=1,(5,p)=1,2fp+152p1+1(modp),(52p1+1)(52p11)=5p110(modp),52p111(modp),2fp+120(modp),fp+110(modp),pfp+1(fp+11)

Note : 斐波那契数列的通项公式的证明可参考博文数学归纳法的5种常用形式——证明题的利器

费马小定理的实际应用举例

可以编制一种简易而难译的密码:
(1) 任何文件都可译成电码,即所谓“明码”,电码都是数字,对长文可分段送出,因此可对文词的长度加以限制,我们可以仅考虑小于某正整数   N   \,N\, N的正整数。
(2) 取一大于   N   \,N\, N的质数   q   \,q\, q,再取另一个与   p   \,p\, p大小相仿的整数   q   \,q\, q,使   ( q   , p − 1 ) = 1   \,(q\,,p-1)=1\, (q,p1)=1
(3) 令   m = p q   \,m=pq\, m=pq,公布   m   \,m\, m,但不公开因数分解   m = p q   \,m=pq\, m=pq
(4) 设有一明码   n < N   \,n \lt N\, n<N,解   n m ≡ c  ⁣ ⁣ ( m o d m )   ( 1 ≤ c < m )   \,n^m \equiv c \!\! \pmod{m}\,(1 \le c \lt m)\, nmc(modm)(1c<m),得   c   \,c\, c,此即讯息   n   \,n\, n的密码,这里   c ≠ 0   \,c \ne 0\, c=0
(5) 收码人知道因数分解   m = p q   \,m=pq\, m=pq,因为   ( q   , p − 1 ) = 1   \,(q\,,p-1)=1\, (q,p1)=1,由裴蜀恒等式可得整数   a   , b   \,a\,,b\, a,b,满足   a q − b ( p − 1 ) = 1   \,aq-b(p-1)=1\, aqb(p1)=1,即   a q = b ( p − 1 ) + 1   \,aq=b(p-1)+1\, aq=b(p1)+1,所以收得密码   c   \,c\, c后,进行运算:   c a ≡ ( n p q ) a ≡ ( n a q ) p ≡ ( n 1 + b ( p − 1 ) ) p ≡ n p ⋅ ( n p − 1 ) b p ≡ n p ⋅ 1 b p ≡ n p ≡ n  ⁣ ⁣ ( m o d p )   \,c^a \equiv (n^{pq})^a \equiv (n^{aq})^p \equiv (n^{1+b(p-1)})^p \equiv n^p \cdot (n^{p-1})^{bp} \equiv n^p \cdot 1^{bp} \equiv n^p \equiv n \!\! \pmod{p}\, ca(npq)a(naq)p(n1+b(p1))pnp(np1)bpnp1bpnpn(modp),即解得   n   ( 1 ≤ n < p )   \,n\,(1 \le n \lt p)\, n(1n<p)
使用这种密码,只要一台电子计算机进行运算即可,从目前的技术水平来看,求一已知数   m   \,m\, m的因数分解是极缓慢的过程,但上述 (4) , (5) 两步在求高次方的余数时却极为方便。这就是这种密码使用方便而难以破译的原因。

可以检验一个整数是质数还是合数:
  N   \,N\, N是要检查的数,选取某一与   N   \,N\, N互质的较小的数   a   \,a\, a,通常取不能整除   N   \,N\, N的小质数。若   N   \,N\, N是质数,则应满足   a N − 1 ≡ 1  ⁣ ⁣ ( m o d N )   \,a^{N-1} \equiv 1 \!\! \pmod{N}\, aN11(modN),因此若经验算得上式不成立,则   N   \,N\, N是合数。

RSA密码编解码原理

1、我方掌握两个两个大质数   p   , q   \,p\,,q\, p,q,由此可造出一个大数   N = p q   \,N=pq\, N=pq
2、选取一个较小的数   n   \,n\, n,使得   n   \,n\, n   p − 1   , q − 1   \,p-1\,,q-1\, p1,q1均互质
3、再选取一整数   m   \,m\, m,使得   m n − 1   \,mn-1\, mn1   ( p − 1 ) ( q − 1 )   \,(p-1)(q-1)\, (p1)(q1)的倍数,即   m n = k ( p − 1 ) ( q − 1 ) + 1   ( k ≥ 1 ) \,mn=k(p-1)(q-1)+1\,(k \ge 1) mn=k(p1)(q1)+1(k1)
4、对外公开密钥   N   \,N\, N   n   \,n\, n
假如我们的朋友向我们发送信息:
(1) 他通过   N   \,N\, N   n   \,n\, n,将要发送的信息(已转化成由一串数字)由明文   x   ( x < N   , 且   ( x   , N ) = 1   )   \,x\,(x \lt N\,,且\,(x\,,N)=1\,)\, x(x<N,(x,N)=1)转化为密文   y   ( y < N )   \,y\,(y \lt N)\, y(y<N)   x n ≡ y  ⁣ ⁣ ( m o d N )   \,x^n \equiv y \!\! \pmod{N}\, xny(modN)   y   \,y\, y就是发出的密文。
(2) 我方收到密文   y   ( y < N   )   \,y\,(y \lt N\,)\, y(y<N)后,根据   φ ( N ) = ( p − 1 ) ( q − 1 )   \,\varphi(N)=(p-1)(q-1)\, φ(N)=(p1)(q1)以及欧拉定理,可算出   y m ≡ ( x n ) m ≡ x m n ≡ x k ( p − 1 ) ( q − 1 ) + 1 ≡ x ⋅ ( x ( p − 1 ) ( q − 1 ) ) k ≡ x ⋅ 1 k ≡ x  ⁣ ⁣ ( m o d N )   \,y^m \equiv (x^n)^m \equiv x^{mn} \equiv x^{k(p-1)(q-1)+1} \equiv x \cdot (x^{(p-1)(q-1)})^k \equiv x \cdot 1^k \equiv x \!\! \pmod{N}\, ym(xn)mxmnxk(p1)(q1)+1x(x(p1)(q1))kx1kx(modN),即   y m   \,y^m\, ym   N   \,N\, N除所得余数就是对方发出的明文   x   \,x\, x

End

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值