《初等数论》:同余的应用(整除性判别法)、有限小数、无限循环小数

本文详细介绍了整除性判别法,包括被2^m, 5^m, 3, 11, 7, 37整除的条件,并探讨了有限小数和无限循环小数的概念,特别是循环节的计算方法,以及如何将既约真分数转化为循环小数。通过实例和定理,阐述了整数和分数在不同进制下的性质及其转化规则。
摘要由CSDN通过智能技术生成

整除性判别法

  2 m   \,2^m\, 2m(或   5 m   \,5^m\, 5m)整除的判别法

一个整数   N   \,N\, N能被   2 m   \,2^m\, 2m(或   5 m   \,5^m\, 5m)整除的充要条件是,它的最后   m   \,m\, m位数能被   2 m   \,2^m\, 2m(或   5 m   \,5^m\, 5m)整除。

  证 : 设 N = ( a n a n − 1 ⋯ a m a m − 1 ⋯ a 1 a 0 ) 10   , 则   N = a n 1 0 n + a n − 1 1 0 n − 1 + ⋯ + a 1 × 10 + a 0   ( 0 ≤ a i ≤ 9   ,   i = 0 , 1 , ⋯   , n   )   , 于 是   N ≡ ( a m − 1 ⋯ a 1 a 0 ) 10  ⁣ ⁣ ( m o d 1 0 m )   , 又   2 m ∣ 1 0 m   ,   5 m ∣ 1 0 m   , 得   N ≡ ( a m − 1 ⋯ a 1 a 0 ) 10  ⁣ ⁣ ( m o d 2 m )   ,   N ≡ ( a m − 1 ⋯ a 1 a 0 ) 10  ⁣ ⁣ ( m o d 5 m )   。 故 当 且 仅 当   2 m ∣ ( a m − 1 ⋯ a 1 a 0 ) 10   时 ,   2 m ∣ N   ; 同 样 , 当 且 仅 当   5 m ∣ ( a m − 1 ⋯ a 1 a 0 ) 10   时 ,   5 m ∣ N   。 \,证:设N=(a_na_{n-1}\cdots a_{m}a_{m-1}\cdots a_1a_0)_{10}\,,则\,N=a_n10^n+a_{n-1}10^{n-1}+\cdots+a_1\times10+a_0\,(0 \le a_i \le 9\,,\,i=0,1,\cdots,n\,)\,,于是\,N \equiv (a_{m-1}\cdots a_1a_0)_{10} \!\! \pmod{10^m}\,,又\,2^m \mid 10^m\,,\,5^m \mid 10^m\,,得\,N \equiv (a_{m-1}\cdots a_1a_0)_{10} \!\! \pmod{2^m}\,,\,N \equiv (a_{m-1}\cdots a_1a_0)_{10} \!\! \pmod{5^m}\,。故当且仅当\,2^m \mid (a_{m-1}\cdots a_1a_0)_{10}\,时,\,2^m \mid N\,;同样,当且仅当\,5^m \mid (a_{m-1}\cdots a_1a_0)_{10}\,时,\,5^m \mid N\,。 N=(anan1amam1a1a0)10,N=an10n+an110n1++a1×10+a0(0ai9,i=0,1,,n),N(am1a1a0)10(mod10m),2m10m,5m10m,N(am1a1a0)10(mod2m),N(am1a1a0)10(mod5m)2m(am1a1a0)10,2mN;,5m(am1a1a0)10,5mN

  3   \,3\, 3(或   9   \,9\, 9)整除的判别法

一个整数   N   \,N\, N能被   3   \,3\, 3(或   9   \,9\, 9)整除的充要条件是,它的十进制数的各位数字之和能被   3   \,3\, 3(或   9   \,9\, 9)整除。

证 : 设 N = ( a n a n − 1 ⋯ a 1 a 0 ) 10   , 则   N = a n 1 0 n + a n − 1 1 0 n − 1 + ⋯ + a 1 ⋅ 10 + a 0   ( 0 ≤ a i ≤ 9   ,   a i   为 整 数 ,   i = 0 , 1 , ⋯   , n   ,   a n ≠ 0   )   , 由 于   10 ≡ 1  ⁣ ⁣ ( m o d 3 )   ,   10 ≡ 1  ⁣ ⁣ ( m o d 9 )   , 因 此   N ≡ a n ⋅ 1 n + a n − 1 ⋅ 1 n − 1 + ⋯ + a 1 ⋅ 1 + a 0 ≡ a n + a n − 1 + ⋯ + a 1 + a 0  ⁣ ⁣ ( m o d 3 )   和  ⁣ ⁣ ( m o d 9 )   。 证:设N=(a_na_{n-1}\cdots a_1a_0)_{10}\,,则\,N=a_n10^n+a_{n-1}10^{n-1}+\cdots+a_1\cdot10+a_0\,(0 \le a_i \le 9\,,\,a_i\,为整数,\,i=0,1,\cdots,n\,,\,a_n \ne 0\,)\,,由于\,10 \equiv 1 \!\! \pmod{3}\,,\,10 \equiv 1 \!\! \pmod{9}\,,因此\,N \equiv a_n \cdot 1^n+a_{n-1}\cdot1^{n-1}+\cdots+a_1\cdot1+a_0 \equiv a_n+a_{n-1}+\cdots+a_1+a_0 \!\! \pmod{3}\,和 \!\!\pmod{9}\,。 N=(anan1a1a0)10,N=an10n+an110n1++a110+a0(0ai9,ai,i=0,1,,n,an=0),101(mod3),101(mod9),Nan1n+an11n1++a11+a0an+an1++a1+a0(mod3)(mod9)

  11   \,11\, 11整除的判别法

一个整数   N   \,N\, N能被   11   \,11\, 11整除的充要条件是,它的十进制数的偶数位置上的数字之和与奇数位置上的数字之和的差能被   11   \,11\, 11整除。

证 : 设 N = ( a n a n − 1 ⋯ a 1 a 0 ) 10   , 则   N = a n 1 0 n + a n − 1 1 0 n − 1 + ⋯ + a 1 ⋅ 10 + a 0   ( 0 ≤ a i ≤ 9   ,   a i   为 整 数 ,   i = 0 , 1 , ⋯   , n   ,   a n ≠ 0   )   , 由 于   10 ≡ − 1  ⁣ ⁣ ( m o d 11 )   , 因 此   N ≡ ( − 1 ) n a n + ( − 1 ) n − 1 a n − 1 + ⋯ + ( − 1 ) a 1 + a 0  ⁣ ⁣ ( m o d 11 )   , 即   N ≡ a 0 − a 1 + a 2 − a 3 + ⋯ + ( − 1 ) n a n  ⁣ ⁣ ( m o d 11 )   。 证:设N=(a_na_{n-1}\cdots a_1a_0)_{10}\,,则\,N=a_n10^n+a_{n-1}10^{n-1}+\cdots+a_1\cdot10+a_0\,(0 \le a_i \le 9\,,\,a_i\,为整数,\,i=0,1,\cdots,n\,,\,a_n \ne 0\,)\,,由于\,10 \equiv -1 \!\! \pmod{11}\,,因此\,N \equiv (-1)^na_n+(-1)^{n-1}a_{n-1}+\cdots+(-1)a_1+a_0 \!\! \pmod{11}\,,即\,N \equiv a_0-a_1+a_2-a_3+\cdots+(-1)^na_n \!\! \pmod{11}\,。 N=(anan1a1a0)10,N=an10n+an110n1++a110+a0(0ai9,ai,i=0,1,,n,an=0),101(mod11),N(1)nan+(1)n1an1++(1)a1+a0(mod11),Na0a1+a2a3++(1)nan(mod11)

  7   \,7\, 7(或   11   \,11\, 11,或   13   \,13\, 13)整除的判别法

将整数   N   \,N\, N的十进制数从个位向高位每   3   \,3\, 3位划分为   1   \,1\, 1组,则   N   \,N\, N能被   7   \,7\, 7(   11   \,11\, 11,或   13   \,13\, 13)整除的充要条件是,它的十进制数的各奇数组的   3   \,3\, 3位数之和与各偶数组的   3   \,3\, 3位数之和的差能被   7   \,7\, 7(   11   \,11\, 11,或   13   \,13\, 13)整除。

证 : 注 意 到   7 × 11 × 13 = 1001   , 且   1 0 3 ≡ − 1  ⁣ ⁣ ( m o d 1001 )   , 因 此   N = ( a n a n − 1 ⋯ a 1 a 0 ) 10 = a n 1 0 n + a n − 1 1 0 n − 1 + ⋯ + a 1 ⋅ 10 + a 0 = ( a 0 + 10 a 1 + 1 0 2 a 2 ) + 1 0 3 ( a 3 + 10 a 4 + 1 0 2 a 5 ) + 1 0 6 ( a 6 + 10 a 7 + 1 0 2 a 8 ) + ⋯ ≡ ( 100 a 2 + 10 a 1 + a 0 ) − ( 100 a 5 + a 4 + a 3 ) + ( 100 a 8 + 10 a 7 + a 6 ) − ⋯ ≡ ( a 2 a 1 a 0 ) 10 − ( a 5 a 4 a 3 ) 10 + ( a 8 a 7 a 6 ) 10 − ⋯  ⁣ ⁣ ( m o d 1001 )   ( 0 ≤ a i ≤ 9   ,   a i   为 整 数 ,   i = 0 , 1 , ⋯   , n   ,   a n ≠ 0   )   。 证:注意到\,7 \times 11 \times 13 = 1001\,,且\,10^3 \equiv -1 \!\! \pmod{1001}\,,因此\,N = (a_na_{n-1}\cdots a_1a_0)_{10}=a_n10^n+a_{n-1}10^{n-1}+\cdots+a_1\cdot10+a_0=(a_0+10a_1+10^2a_2)+10^3(a3+10a_4+10^2a_5)+10^6(a_6+10a_7+10^2a_8)+\cdots \equiv (100a_2+10a_1+a_0)-(100a_5+a_4+a_3)+(100a_8+10a_7+a_6)-\cdots \equiv (a_2a_1a_0)_{10}-(a_5a_4a_3)_{10}+(a_8a_7a_6)_{10}-\cdots \!\! \pmod{1001}\,(0 \le a_i \le 9\,,\,a_i\,为整数,\,i=0,1,\cdots,n\,,\,a_n \ne 0\,)\,。 7×11×13=1001,1031(mod1001),N=(anan1a1a0)10=an10n+an110n1++a110+a0=(a0+10a1+102a2)+103(a3+10a4+102a5)+106(a6+10a7+102a8)+(100a2+10a1+a0)(100a5+a4+a3)+(100a8+10a7+a6)(a2a1a0)10(a5a4a3)10+(a8a7a6)10(mod1001)(0ai9,ai,i=0,1,,n,an=0)

  37   \,37\, 37整除的判别法

将整数   N   \,N\, N的十进制数从个位向高位每   3   \,3\, 3位划分为   1   \,1\, 1组,则   N   \,N\, N能被   37   \,37\, 37整除的充要条件是,它的十进制数的各组的   3   \,3\, 3位数之和能被   37   \,37\, 37整除。

证 : 因 为   1 0 3 ≡ 1  ⁣ ⁣ ( m o d 37 )   , 所 以   1 0 3 k ≡ 1  ⁣ ⁣ ( m o d 37 )   ( k   为 正 整 数 )   , 将   N   从 个 位 起 向 左 每   3   位 划 分 为 一 组 , 设 所 得 到 的   3   位 数 从 右 向 左 依 次 为   A 0 , A 1 , ⋯   , A k   , 则   N ≡ A 0 + 1 0 3 A 1 + ⋯ + ( 1 0 3 ) k A k ≡ A 0 + A 1 + ⋯ + A k  ⁣ ⁣ ( m o d 37 )   。 证:因为\,10^3 \equiv 1 \!\! \pmod{37}\,,所以\,10^{3k} \equiv 1 \!\! \pmod{37}\,(k\,为正整数)\,,\\将\,N\,从个位起向左每\,3\,位划分为一组,设所得到的\,3\,位数从右向左依次为\,A_0,A_1,\cdots,A_k\,,\\则\,N \equiv A_0+10^3A_1+\cdots+(10^3)^kA_k \equiv A_0+A_1+\cdots+A_k \!\! \pmod{37}\,。 1031(mod37),103k1(mod37)(k),N3,3A0,A1,,Ak,NA0+103A1++(103)kAkA0+A1++Ak(mod37)

有限小数

  a b   ( 0 < a < b ) \,\dfrac{a}{b}\,(0 \lt a \lt b) ba(0<a<b)真分数,当   ( a   , b ) = 1   \,(a\,,b)=1\, (a,b)=1时,   a b   \,\dfrac{a}{b}\, ba称为既约分数

定理:既约真分数   a b   \,\dfrac{a}{b}\, ba可化为有限小数的充要条件是,   b = 2 m ⋅ 5 n   \,b=2^m\cdot5^n\, b=2m5n(   m   , n   \,m\,,n\, m,n是不全为   0   \,0\, 0的非负整数),且有限小数的位数为   max ⁡ { m   , n }   \,\max\{m\,,n\}\, max{m,n}

证 : ( 1 )   充 分 性 : 设   b = 2 m ⋅ 5 n   , 且   m ≥ n   , 则   a b = a 2 m ⋅ 5 n = 5 m − n a 1 0 m   , 因 为   m ≥ n   , 所 以   5 m − n a   为 一 整 数 , 即   a b   为 一 有 限 小 数 , 其 位 数 为   m   。 同 理 , 当   m < n   时 , a b = a 2 m ⋅ 5 n = 2 n − m a 1 0 n   为 有 限 小 数 , 其 位 数 为   n   , 故 当   b = 2 m ⋅ 5 n   (   m   , n   是 不 全 为   0   的 非 负 整 数 ) 时 , 既 约 真 分 数   a b   可 化 为 有 限 小 数 , 且 位 数 为   max ⁡ { m   , n }   。 ( 2 )   必 要 性 : 设   a b   是 既 约 真 分 数 , 且   a b = c 1 0 k   ( k   为 正 整 数 )   , 若   b   含 有   2   和   5   以 外 的 质 因 数   p   , 可 设   b = b 1 p   , 则 由   a b = a b 1 p = c 1 0 k   , 得   a ⋅ 1 0 k = b 1 p c   , 即   a ⋅ 2 k ⋅ 5 k = b 1 p c   , 因 为   p ∣ ( a ⋅ 2 k ⋅ 5 k )   , 但   ( 2 k ⋅ 5 k   , p ) = 1   , 所 以   p ∣ a   , 而   p ∣ b   , 这 与   a b   为 既 约 分 数 矛 盾 , 所 以   b   不 含   2   和   5   以 外 的 质 因 数 。 证:(1)\,充分性:设\,b=2^m\cdot5^n\,,且\,m \ge n\,,则\,\dfrac{a}{b}=\dfrac{a}{2^m\cdot5^n}=\dfrac{5^{m-n}a}{10^m}\,,因为\,m \ge n\,,所以\,5^{m-n}a\,为一整数,即\,\dfrac{a}{b}\,为一有限小数,其位数为\,m\,。同理,当\,m \lt n\,时,\dfrac{a}{b}=\dfrac{a}{2^m\cdot5^n}=\dfrac{2^{n-m}a}{10^n}\,为有限小数,其位数为\,n\,,故当\,b=2^m\cdot5^n\,(\,m\,,n\,是不全为\,0\,的非负整数)时,既约真分数\,\dfrac{a}{b}\,可化为有限小数,且位数为\,\max\{m\,,n\}\,。(2)\,必要性:设\,\dfrac{a}{b}\,是既约真分数,且\,\dfrac{a}{b}=\dfrac{c}{10^k}\,(k\,为正整数)\,,若\,b\,含有\,2\,和\,5\,以外的质因数\,p\,,可设\,b=b_1p\,,则由\,\dfrac{a}{b}=\dfrac{a}{b_1p}=\dfrac{c}{10^k}\,,得\,a\cdot10^k=b_1pc\,,即\,a\cdot2^k\cdot5^k=b_1pc\,,因为\,p \mid (a\cdot2^k\cdot5^k)\,,但\,(2^k\cdot5^k\,,p)=1\,,所以\,p \mid a\,,而\,p \mid b\,,这与\,\dfrac{a}{b}\,为既约分数矛盾,所以\,b\,不含\,2\,和\,5\,以外的质因数。 (1)b=2m5n,mn,ba=2m5na=10m5mna,mn,5mna,ba,m,m<n,ba=2m5na=10n2nma,n,b=2m5n(m,n0),ba,max{m,n}(2)ba,ba=10kc(k),b25p,b=b1p,ba=b1pa=10kc,a10k=b1pc,a2k5k=b1pc,p(a2k5k),(2k5k,p)=1,pa,pb,ba,b25

例题

  •   1 n   \,\dfrac{1}{n}\, n1   b   \,b\, b进制中的小数展开式为   1 n = d 1 b + d 2 b 2 + d 3 b 3 + ⋯   ( 0 ≤ d k < b   ,   k = 1 , 2 , 3 , ⋯   ) \,\dfrac{1}{n}=\dfrac{d_1}{b}+\dfrac{d_2}{b^2}+\dfrac{d_3}{b^3}+\cdots\,(0 \le d_k \lt b\,,\,k=1,2,3,\cdots\,) n1=bd1+b2d2+b3d3+(0dk<b,k=1,2,3,),试证:若此小数展开式有限,则   n   \,n\, n的每一个质因数都是   b   \,b\, b的一个因数。
    证 : 设   1 n = d 1 b + d 2 b 2 + ⋯ + d t b t   ( 0 ≤ d k < b   ,   k = 1 , 2 , ⋯   , t   )   , 则   b t n = d 1 b t − 1 + d 2 b t − 2 + ⋯ + d t   是 一 整 数 , 即   n ∣ b t   。 所 以 ,   n   的 每 一 个 质 因 数 都 是   b   的 一 个 因 数 。 证:设\,\dfrac{1}{n}=\dfrac{d_1}{b}+\dfrac{d_2}{b^2}+\cdots+\dfrac{d_t}{b^t}\,(0 \le d_k \lt b\,,\,k=1,2,\cdots,t\,)\,,则\,\dfrac{b^t}{n}=d_1b^{t-1}+d_2b^{t-2}+\cdots+d_t\,是一整数,即\,n \mid b^t\,。所以,\,n\,的每一个质因数都是\,b\,的一个因数。 n1=bd1+b2d2++btdt(0dk<b,k=1,2,,t),nbt=d1bt1+d2bt2++dt,nbt,nb
  • 试证:在   b   \,b\, b进制中,若   n   \,n\, n的每一个质因数都是   b   \,b\, b的一个因数,则   1 n   \,\dfrac{1}{n}\, n1的小数展开式是有限的。
    提 示 : 参 考 上 一 题 提示:参考上一题

无限循环小数

  a i   ( i = 1 , 2 , ⋯   )   \,a_i\,(i=1,2,\cdots)\, ai(i=1,2,)是不大于   9   \,9\, 9的非负整数,如果对于小数   0. a 1 a 2 ⋯ a n ⋯    \,0.a_1a_2\cdots a_n\cdots\,\, 0.a1a2an中的任一   a j   \,a_j\, aj,总存在一个大于   j   \,j\, j的正整数   k   \,k\, k,使得   a k ≠ 0   \,a_k \ne 0\, ak=0,那么就把   0. a 1 a 2 ⋯ a n ⋯   \,0.a_1a_2\cdots a_n\cdots\, 0.a1a2an称为无限小数。

若对于一个无限小数   0.   a 1 a 2 ⋯ a n ⋯   \,0.\,a_1a_2\cdots a_n\cdots\, 0.a1a2an,能找到两个整数   s ≥ 0   ,    t > 0   \,s \ge 0\,,\,\,t \gt 0\, s0,t>0,使得   a s + i = a s + k t + i   ( i = 1 , 2 , ⋯   , t   ;   k = 1 , 2 , ⋯   ) \,a_{s+i}=a_{s+kt+i}\,(i=1,2,\cdots,t\,;\,k=1,2,\cdots\,) as+i=as+kt+i(i=1,2,,t;k=1,2,),我们就称它为循环小数,简记成   0.   a 1 a 2 ⋯ a s a s + 1 ˙ ⋯ a s + t ˙   \,0.\,a_1a_2\cdots a_s\dot{a_{s+1}}\cdots \dot{a_{s+t}}\, 0.a1a2asas+1˙as+t˙

对循环小数而言,具有上述性质的   s   \,s\, s   t   \,t\, t不止一个,若找到的   t   \,t\, t是最小的,就称   a s + 1 ⋯ a s + t   \,a_{s+1}\cdots a_{s+t}\, as+1as+t为循环节,   t   \,t\, t称为循环节长。若最小的   s = 0   \,s = 0\, s=0,这个小数就称纯循环小数,否则称为混循环小数。

定理

既约真分数   a b   \,\dfrac{a}{b}\, ba可化为纯循环小数的充要条件是   ( b   , 10 ) = 1   \,(b\,,10)=1\, (b,10)=1, 并且循环节长是使   1 0 t ≡ 1  ⁣ ⁣ ( m o d b )   \,10^t \equiv 1 \!\! \pmod{b}\, 10t1(modb)成立的最小正整数   t   \,t\, t

证 : ( 1 )   必 要 性 : 若   a b   能 表 示 成 纯 循 环 小 数 , 记 循 环 节 长 为   t   , 则 由   0 < a b < 1   , 知   a b = 0.   a 1 ˙ a 2 ⋯ a t ˙   , 即   1 0 t ⋅ a b = ( 1 0 t − 1 a 1 + 1 0 t − 2 a 2 + ⋯ + a t ) + 0.   a 1 ˙ a 2 ⋯ a t ˙ = q + a b   ( q   为 正 整 数 )   , 故   a b = q 1 0 t − 1   , 或   b q = a ( 1 0 t − 1 )   , 因 为   ( a   , b ) = 1   , 所 以   b ∣ ( 1 0 t − 1 )   , 即   ( b   , 10 ) = 1   , 且   1 0 t ≡ 1  ⁣ ⁣ ( m o d b )   。 ( 2 )   充 分 性 : 若   ( b   , 10 ) = 1   , 则 由 欧 拉 定 理 , 知 一 定 存 在 某 个 正 整 数   t   ( t   可 能 就 是   φ ( b )   )   , 使 得   1 0 t ≡ 1  ⁣ ⁣ ( m o d b )   成 立   , 所 以   1 0 t a ≡ a  ⁣ ⁣ ( m o d b )   , 即   1 0 t a − a = b m   ( m   是 一 个 整 数 )   , 于 是   1 0 t ⋅ a b − a b = m   , 令   a b = 0.   a 1 a 2 ⋅ a t a t + 1 a t + 2 ⋯   , 则 有   1 0 t ⋅ a b = ( 1 0 t − 1 a 1 + 1 0 t − 2 a 2 + ⋯ + a t ) + 0.   a t + 1 a t + 2 ⋯   , 所 以   m = ( 1 0 t − 1 a 1 + 1 0 t − 2 a 2 + ⋯ + a t ) + 0.   a t + 1 a t + 2 ⋯ − 0.   a 1 ⋯ a t a t + 1 a t + 2 ⋯   , 而   m   是 整 数 , 故   0.   a t + 1 a t + 2 ⋯ − 0.   a 1 ⋯ a t a t + 1 a t + 2 ⋯ = 0   , 因 此 有   a i = a k t + i   ( i = 1 , 2 , ⋯   , t   ;   k = 1 , 2 , ⋯   )   , 这 说 明   a b   能 表 示 成 纯 循 环 小 数 , 循 环 节 长 是 使   1 0 t ≡ 1  ⁣ ⁣ ( m o d b )   成 立 的 最 小 正 整 数   t   。 证:(1)\,必要性:若\,\dfrac{a}{b}\,能表示成纯循环小数,记循环节长为\,t\,,则由\,0 \lt \dfrac{a}{b} \lt 1\,,知\,\dfrac{a}{b}=0.\,\dot{a_1}a_2\cdots \dot{a_t}\,,即\,10^t\cdot\dfrac{a}{b}=(10^{t-1}a_1+10^{t-2}a_2+\cdots+a_t)+0.\,\dot{a_1}a_2\cdots \dot{a_t}=q+\dfrac{a}{b}\,(q\,为正整数)\,,故\,\dfrac{a}{b}=\dfrac{q}{10^t-1}\,,或\,bq=a(10^t-1)\,,因为\,(a\,,b)=1\,,所以\,b \mid (10^t-1)\,,即\,(b\,,10)=1\,,且\,10^t \equiv 1 \!\! \pmod{b}\,。(2)\,充分性:若\,(b\,,10)=1\,,则由欧拉定理,知一定存在某个正整数\,t\,(t\,可能就是\,\varphi(b)\,)\,,使得\,10^t \equiv 1 \!\! \pmod{b}\,成立\,,所以\,10^ta \equiv a \!\! \pmod{b}\,,即\,10^ta-a=bm\,(m\,是一个整数)\,,于是\,10^t\cdot\dfrac{a}{b}-\dfrac{a}{b}=m\,,令\,\dfrac{a}{b}=0.\,a_1a_2\cdot a_ta_{t+1}a_{t+2}\cdots\,,则有\,10^t\cdot\dfrac{a}{b}=(10^{t-1}a_1+10^{t-2}a_2+\cdots+a_t)+0.\,a_{t+1}a_{t+2}\cdots\,,所以\,m=(10^{t-1}a_1+10^{t-2}a_2+\cdots+a_t)+0.\,a_{t+1}a_{t+2}\cdots-0.\,a_1\cdots a_ta_{t+1}a_{t+2}\cdots\,,而\,m\,是整数,故\,0.\,a_{t+1}a_{t+2}\cdots-0.\,a_1\cdots a_ta_{t+1}a_{t+2}\cdots=0\,,因此有\,a_i=a_{kt+i}\,(i=1,2,\cdots,t\,;\,k=1,2,\cdots\,)\,,这说明\,\dfrac{a}{b}\,能表示成纯循环小数,循环节长是使\,10^t \equiv 1 \!\! \pmod{b}\,成立的最小正整数\,t\,。 (1)ba,t,0<ba<1,ba=0.a1˙a2at˙,10tba=(10t1a1+10t2a2++at)+0.a1˙a2at˙=q+ba(q),ba=10t1q,bq=a(10t1),(a,b)=1,b(10t1),(b,10)=1,10t1(modb)(2)(b,10)=1,,t(tφ(b)),使10t1(modb),10taa(modb),10taa=bm(m),10tbaba=m,ba=0.a1a2atat+1at+2,10tba=(10t1a1+10t2a2++at)+0.at+1at+2,m=(10t1a1+10t2a2++at)+0.at+1at+20.a1atat+1at+2,m,0.at+1at+20.a1atat+1at+2=0,ai=akt+i(i=1,2,,t;k=1,2,),ba,使10t1(modb)t

  b   \,b\, b是一个正整数,且   ( b   , 10 ) = 1   \,(b\,,10)=1\, (b,10)=1   t   \,t\, t是一个能使   1 0 t ≡ 1  ⁣ ⁣ ( m o d b )   \,10^t \equiv 1 \!\! \pmod{b}\, 10t1(modb)成立的最小正整数,则   t ∣ φ ( b )   \,t \mid \varphi(b)\, tφ(b)

证 : 根 据 欧 拉 定 理 , 知   1 0 φ ( b ) ≡ 1  ⁣ ⁣ ( m o d b )   , 由 题 意 知   0 < t ≤ φ ( b )   , 设   φ ( b ) = t m + r   ( 0 ≤ r < t   ,   m   是 一 正 整 数 )   , 则   1 0 φ ( b ) ≡ 1 0 t m + r ≡ 1 0 r ≡ 1  ⁣ ⁣ ( m o d b )   , 若   r ≠ 0   , 则   0 < r < t   , 且   1 0 r ≡ 1  ⁣ ⁣ ( m o d b )   , 与   t   的 定 义 矛 盾 , 故   r = 0   , 此 时 ,   t ∣ φ ( b )   。 证:根据欧拉定理,知\,10^{\varphi(b)} \equiv 1 \!\! \pmod{b}\,,由题意知\,0 \lt t \le \varphi(b)\,,设\,\varphi(b)=tm+r\,(0 \le r \lt t\,,\,m\,是一正整数)\,,则\,10^{\varphi(b)} \equiv 10^{tm+r} \equiv 10^r \equiv 1 \!\! \pmod{b}\,,若\,r \ne 0\,,则\,0 \lt r \lt t\,,且\,10^r \equiv 1 \!\! \pmod{b}\,,与\,t\,的定义矛盾,故\,r=0\,,此时,\,t \mid \varphi(b)\,。 ,10φ(b)1(modb),0<tφ(b),φ(b)=tm+r(0r<t,m),10φ(b)10tm+r10r1(modb),r=0,0<r<t,10r1(modb),t,r=0,,tφ(b)

  0 < a < b   ,   ( a   , b ) = 1   ,   b = 2 m ⋅ 5 n ⋅ b 1   ,   b 1 > 1   \,0 \lt a \lt b\,,\,(a\,,b)=1\,,\,b=2^m\cdot5^n\cdot b_1\,,\,b_1 \gt 1\, 0<a<b,(a,b)=1,b=2m5nb1,b1>1   ( b 1   , 10 ) = 1   ,   m   , n   \,(b_1\,,10)=1\,,\,m\,,n\, (b1,10)=1,m,n都是非负整数但不同时为   0   \,0\, 0,则既约真分数   a b   \,\dfrac{a}{b}\, ba可化为混循环小数。其中不循环部分位数是   max ⁡ { m   , n }   \,\max\{m\,,n\}\, max{m,n},循环部分位数是使   1 0 t ≡ 1  ⁣ ⁣ ( m o d b 1 )   \,10^t \equiv 1 \!\! \pmod{b_1}\, 10t1(modb1)成立的最小正整数   t   \,t\, t

若由既约真分数   a b   \,\dfrac{a}{b}\, ba所化成的纯循环小数的循环节长   t   \,t\, t是偶数,即   t = 2 k   \,t=2k\, t=2k,记   a b = 0.   q 1 ˙ q 2 ⋯ q k t 1 t 2 ⋯ t k ˙   \,\dfrac{a}{b}=0.\,\dot{q_1}q_2\cdots q_kt_1t_2\cdots \dot{t_k}\, ba=0.q1˙q2qkt1t2tk˙,且   ( b   , 1 0 k − 1 ) = 1   \,(b\,,10^k-1)=1\, (b,10k1)=1,则   q i + t i = 9   ( i = 1 , 2 , ⋯   , k ) \,q_i+t_i=9\,(i=1,2,\cdots,k) qi+ti=9(i=1,2,,k)

证 : 因 为   1 0 t ≡ 1  ⁣ ⁣ ( m o d b )   ,   t = 2 k   , 所 以   b ∣ ( 1 0 t − 1 )   , 即   b ∣ ( 1 0 k + 1 ) ( 1 0 k − 1 )   , 由   ( b   , 1 0 k − 1 ) = 1   , 知   b ∣ ( 1 0 k + 1 )   。 令   1 0 k + 1 = b s   , 则   b s − 2 = 1 0 k − 1 = 99 ⋯ 9   ( 有   k   个   9   )    ( 1 )   , 由   1 0 k a = ( b s − 1 ) a = ( s a − 1 ) b + ( b − a )   ( 0 < b − a < b )   及   1 0 k a = ( 1 0 k − 1 q 1 + 1 0 k − 2 q 2 + ⋯ + 10 q k − 1 + q k ) b + r   ( 0 < r < b )   , 知   s a − 1 = 1 0 k − 1 q 1 + 1 0 k − 2 q 2 + ⋯ + 10 q k − 1 + q k    ( 2 )   , 又 由   1 0 k ( b − a ) = 1 0 k r = ( 1 0 k − 1 t 1 + 1 0 k − 2 t 2 + ⋯ + 10 t k − 1 + t k ) b + r t   ( 0 < r t < b )   及   1 0 k ( b − a ) = ( b s − 1 ) ( b − a ) = ( b s − 1 − a s ) b + a   ( 0 < a < b )   , 知   b s − 1 − a s = 1 0 k − 1 t 1 + 1 0 k − 2 t 2 + ⋯ + 10 t k − 1 + t k   ( 3 )   , 将   ( 2 )   与   ( 3 )   相 加 , 得   b s − 2 = 1 0 k − 1 ( q 1 + t 1 ) + 1 0 k − 2 ( q 2 + t 2 ) + ⋯ + 10 ( q k − 1 + t k − 1 ) + ( q k + t k )    ( 4 )   , 比 较   ( 1 )   与   ( 4 )   的 两 边 , 有   q i + t i = 9   ( i = 1 , 2 , ⋯   , k ) 证:因为\,10^t \equiv 1 \!\! \pmod{b}\,,\,t=2k\,,所以\,b \mid (10^t-1)\,,即\,b \mid (10^k+1)(10^k-1)\,,由\,(b\,,10^k-1)=1\,,知\,b \mid (10^k+1)\,。令\,10^k+1=bs\,,则\,bs-2=10^k-1=99\cdots9\,(有\,k\,个\,9\,)\,\,(1)\,,由\,10^ka=(bs-1)a=(sa-1)b+(b-a)\,(0 \lt b-a \lt b)\,及\,10^ka=(10^{k-1}q_1+10^{k-2}q_2+\cdots+10q_{k-1}+q_k)b+r\,(0 \lt r \lt b)\,,知\,sa-1=10^{k-1}q_1+10^{k-2}q_2+\cdots+10q_{k-1}+q_k\,\,(2)\,,又由\,10^k(b-a)=10^kr=(10^{k-1}t_1+10^{k-2}t_2+\cdots+10t_{k-1}+t_k)b+r_t\,(0 \lt r_t \lt b)\,及\,10^k(b-a)=(bs-1)(b-a)=(bs-1-as)b+a\,(0 \lt a \lt b)\,,知\,bs-1-as=10^{k-1}t_1+10^{k-2}t_2+\cdots+10t_{k-1}+t_k\,(3)\,,将\,(2)\,与\,(3)\,相加,得\,bs-2=10^{k-1}(q_1+t_1)+10^{k-2}(q_2+t_2)+\cdots+10(q_{k-1}+t_{k-1})+(q_k+t_k)\,\,(4)\,,比较\,(1)\,与\,(4)\,的两边,有\,q_i+t_i=9\,(i=1,2,\cdots,k) 10t1(modb),t=2k,b(10t1),b(10k+1)(10k1),(b,10k1)=1,b(10k+1)10k+1=bs,bs2=10k1=999(k9)(1),10ka=(bs1)a=(sa1)b+(ba)(0<ba<b)10ka=(10k1q1+10k2q2++10qk1+qk)b+r(0<r<b),sa1=10k1q1+10k2q2++10qk1+qk(2),10k(ba)=10kr=(10k1t1+10k2t2++10tk1+tk)b+rt(0<rt<b)10k(ba)=(bs1)(ba)=(bs1as)b+a(0<a<b),bs1as=10k1t1+10k2t2++10tk1+tk(3),(2)(3),bs2=10k1(q1+t1)+10k2(q2+t2)++10(qk1+tk1)+(qk+tk)(4),(1)(4),qi+ti=9(i=1,2,,k)

  b   \,b\, b是大于   1   \,1\, 1的正整数。当   ( 10   , b ) = 1   \,(10\,,b)=1\, (10,b)=1时,分数   1 b   \,\dfrac{1}{b}\, b1可表示成无限纯循环小数   1 b = 0. a 1 ˙ a 2 ⋯ a r ˙   \,\dfrac{1}{b}=0.\dot{a_1}a_2\cdots\dot{a_r}\, b1=0.a1˙a2ar˙,若   b 1   \,b_1\, b1   b   \,b\, b的个位数,则   1 b   \,\dfrac{1}{b}\, b1的循环节   a 1 a 2 ⋯ a r   \,a_1a_2\cdots a_r\, a1a2ar中的   a r   \,a_r\, ar是与   b 1   \,b_1\, b1之积的末位数字为   9   \,9\, 9的数字,   a r − 1   \,a_{r-1}\, ar1   ( a r b + 1 10 ) a r   \,(\dfrac{a_rb+1}{10})a_r\, (10arb+1)ar结果的个位数字,记进位   d 1 = [   ( a r b + 1 ) a r 100   ]   \,d_1=[\,\dfrac{(a_rb+1)a_r}{100}\,]\, d1=[100(arb+1)ar],则   a r − 2   \,a_{r-2}\, ar2   d 1 + ( a r b + 1 10 ) a r − 1   \,d_1+(\dfrac{a_rb+1}{10})a_{r-1}\, d1+(10arb+1)ar1结果的个位数字,记进位   d 2 = [   d 1 10 + ( a r b + 1 ) a r − 1 100   ]   \,d_2=[\,\dfrac{d_1}{10}+\dfrac{(a_rb+1)a_{r-1}}{100}\,]\, d2=[10d1+100(arb+1)ar1],则   a r − 3   \,a_{r-3}\, ar3   d 2 + ( a r b + 1 10 ) a r − 2   \,d_2+(\dfrac{a_rb+1}{10})a_{r-2}\, d2+(10arb+1)ar2结果的个位数字,   ⋯   \,\cdots\, ,一般地,记进位   d i = [   d i − 1 10 + ( a r b + 1 ) a r − i + 1 100   ]   \,d_i=[\,\dfrac{d_{i-1}}{10}+\dfrac{(a_rb+1)a_{r-i+1}}{100}\,]\, di=[10di1+100(arb+1)ari+1],则   a r − i − 1   \,a_{r-i-1}\, ari1   d i + ( a r b + 1 10 ) a r − i   \,d_i+(\dfrac{a_rb+1}{10})a_{r-i}\, di+(10arb+1)ari结果的个位数字。(其中   i   \,i\, i为整数,且   1 ≤ i ≤ r − 2   \,1 \le i \le r-2\, 1ir2   d 0 = 0   \,d_0=0\, d0=0)

证 : 容 易 知   1 b = 1 1 0 r − 1 ( a r + 10 a r − 1 + ⋯ + 1 0 r − 1 a 1 )   , 即   ( a r + 10 a r − 1 + ⋯ + 1 0 r − 1 a 1 ) b = 1 0 r − 1    ( 1 )   , 在 上 式 取 模   10   , 可 得   a r b ≡ − 1 ≡ 9  ⁣ ⁣ ( m o d 10 )    ( 2 )   , 因 为   b 1   是   b   的 个 位 数 , 所 以   b ≡ b 1  ⁣ ⁣ ( m o d 10 )   , 代 入   ( 2 )   即 得   a r b 1 ≡ 9  ⁣ ⁣ ( m o d 10 )   , 这 说 明   a r   是 与   b 1   之 积 的 末 位 数 字 为   9   的 数 字 。 由   ( 1 )   式 , 又 得   a r b + 1 10 + ( a r − 1 + ⋯ + 1 0 k − 2 a r − k + 1 + 1 0 k − 1 a r − k + ⋯ + 1 0 r − 2 a 1 ) b = 1 0 r − 1    (   2 ≤ k ≤ r − 2   )   ( 3 )   , 上 式 两 边 同 乘 以   a r   后 再 除 以   1 0 k − 1   , 整 理 得   − a r − k ( a r b ) = a r 1 0 k − 1 ( a r b + 1 10 + ( a r − 1 + ⋯ + 1 0 k − 2 a r − k + 1 ) b ) + ( 10 a r − k − 1 + ⋯ + 1 0 r − k − 1 a 1 ) a r b − 1 0 r − k a r    ( 4 )   , 又 在   ( 1 )   式 中 注 意 到   − a r − 1 ( a r b ) = ( a r b + 1 10 ) a r + ( 10 a r − 2 + ⋯ + 1 0 r − 2 a 1 ) a r b − 1 0 r − 1 a r    ( 5 )   , 若 设 q i = { a r 1 0 i − 1 ( a r b + 1 10 + ( a r − 1 + ⋯ + 1 0 i − 2 a r − i + 1 ) b )    ,     i ≥ 2   a r ( a r b + 1 ) 10    ,    i = 1 结 合   ( 2 )   式 , 在 式   ( 4 )   和   ( 5 )   取 模   10   , 处 理 整 合 可 得 :   q i = 10 d i + a r − i    ( 1 ≤ i ≤ r − 1 )    ( 6 )   , 进 一 步 得   q i + 1 = 10 d i + 1 + a r − i − 1 = q i + a r a r − i b 10 = d i + ( a r b + 1 10 ) a r − i    ( 7 )   , 于 是 得   q i + 1 ≡ a r − i − 1 ≡ d i + a r b + 1 10 a r − i  ⁣ ⁣ ( m o d 10 )    ( 1 ≤ i ≤ r − 2 )   ( 8 )   ,   d i + 1 = d i 10 + ( a r b + 1 ) a r − i 100 − a r − i − 1 10 = [   d i 10 + ( a r b + 1 ) a r − i 100   ]    ( 9 )   , 又 由   ( 6 )   式 得 :   d 1 = q 1 − a r − 1 10 = a r ( a r b + 1 ) 100 − a r − 1 10 = [   a r ( a r b + 1 ) 100   ]    ( 10 )   , 将   ( 10 )   式 代 回   ( 9 )   , 可 知 若 设 边 界 条 件 为   d 0 = 0   , 则 : d i = [   d i − 1 10 + ( a r b + 1 ) a r − i + 1 100   ]    ( 1 ≤ i ≤ r − 2 )   证:容易知\,\dfrac{1}{b}=\dfrac{1}{10^r-1}(a_r+10a_{r-1}+\cdots+10^{r-1}a_1)\,,即\,(a_r+10a_{r-1}+\cdots+10^{r-1}a_1)b=10^r-1\,\,(1)\,,\\在上式取模\,10\,,可得\,a_rb \equiv -1 \equiv 9 \!\! \pmod{10}\,\,(2)\,,因为\,b_1\,是\,b\,的个位数,所以\,b \equiv b_1 \!\! \pmod{10}\,,代入\,(2)\,即得\\\,a_rb_1 \equiv 9 \!\! \pmod{10}\,,这说明\,a_r\,是与\,b_1\,之积的末位数字为\,9\,的数字。\\由\,(1)\,式,又得\,\dfrac{a_rb+1}{10}+(a_{r-1}+\cdots+10^{k-2}a_{r-k+1}+10^{k-1}a_{r-k}+\cdots+10^{r-2}a_1)b=10^{r-1}\,\,(\,2 \le k \le r-2\,)\,(3)\,,\\上式两边同乘以\,a_r\,后再除以\,10^{k-1}\,,整理得\\\,-a_{r-k}(a_rb)=\dfrac{a_r}{10^{k-1}}(\dfrac{a_rb+1}{10}+(a_{r-1}+\cdots+10^{k-2}a_{r-k+1})b)+(10a_{r-k-1}+\cdots+10^{r-k-1}a_1)a_rb-10^{r-k}a_r\,\,(4)\,,\\又在\,(1)\,式中注意到\,-a_{r-1}(a_rb)=(\dfrac{a_rb+1}{10})a_r+(10a_{r-2}+\cdots+10^{r-2}a_1)a_rb-10^{r-1}a_r\,\,(5)\,,若设\\ q_i=\begin{cases} &\dfrac{a_r}{10^{i-1}}(\dfrac{a_rb+1}{10}+(a_{r-1}+\cdots+10^{i-2}a_{r-i+1})b)\,\,,\,\,\,i \ge 2\, \\ \\& \dfrac{a_r(a_rb+1)}{10}\,\,,\,\, i=1\end{cases} \\ 结合\,(2)\,式,在式\,(4)\,和\,(5)\,取模\,10\,,处理整合可得:\,q_i = 10d_i+a_{r-i}\,\,(1 \le i \le r-1)\,\,(6)\,,进一步得\\\,q_{i+1}=10d_{i+1}+a_{r-i-1}=\dfrac{q_i+a_ra_{r-i}b}{10}=d_i+(\dfrac{a_rb+1}{10})a_{r-i}\,\,(7)\,,\\于是得\,q_{i+1} \equiv a_{r-i-1} \equiv d_i+\dfrac{a_rb+1}{10}a_{r-i} \!\! \pmod{10}\,\,(1 \le i \le r-2)\,(8)\,,\\\,d_{i+1}=\dfrac{d_{i}}{10}+\dfrac{(a_rb+1)a_{r-i}}{100}-\dfrac{a_{r-i-1}}{10}=[\,\dfrac{d_{i}}{10}+\dfrac{(a_rb+1)a_{r-i}}{100}\,]\,\,(9)\,,又由\,(6)\,式得:\\\,d_1=\dfrac{q_1-a_{r-1}}{10}=\dfrac{a_r(a_rb+1)}{100}-\dfrac{a_{r-1}}{10}=[\,\dfrac{a_r(a_rb+1)}{100}\,]\,\,(10)\,,将\,(10)\,式代回\,(9)\,,可知若设边界条件为\,d_0=0\,,则:\\d_i=[\,\dfrac{d_{i-1}}{10}+\dfrac{(a_rb+1)a_{r-i+1}}{100}\,]\,\,(1 \le i \le r-2)\, b1=10r11(ar+10ar1++10r1a1),(ar+10ar1++10r1a1)b=10r1(1),10,arb19(mod10)(2),b1b,bb1(mod10),(2)arb19(mod10),arb19(1),10arb+1+(ar1++10k2ark+1+10k1ark++10r2a1)b=10r1(2kr2)(3),ar10k1,ark(arb)=10k1ar(10arb+1+(ar1++10k2ark+1)b)+(10ark1++10rk1a1)arb10rkar(4),(1)ar1(arb)=(10arb+1)ar+(10ar2++10r2a1)arb10r1ar(5),qi=10i1ar(10arb+1+(ar1++10i2ari+1)b),i210ar(arb+1),i=1(2),(4)(5)10,qi=10di+ari(1ir1)(6),qi+1=10di+1+ari1=10qi+ararib=di+(10arb+1)ari(7),qi+1ari1di+10arb+1ari(mod10)(1ir2)(8),di+1=10di+100(arb+1)ari10ari1=[10di+100(arb+1)ari](9),(6)d1=10q1ar1=100ar(arb+1)10ar1=[100ar(arb+1)](10),(10)(9),d0=0,di=[10di1+100(arb+1)ari+1](1ir2)

例题

写出   1 29   \,\dfrac{1}{29}\, 291化为循环小数的结果。

证 : 因 为   φ ( 29 ) = 28   ,   28   的 全 部 正 因 数 是   1 , 2 , 4 , 7 , 14 , 28   , 而   10 ≡ 10  ⁣ ⁣ ( m o d 29 )   ,   1 0 2 ≡ 13  ⁣ ⁣ ( m o d 29 )   ,   1 0 4 ≡ − 5  ⁣ ⁣ ( m o d 29 )   ,   1 0 7 ≡ − 12  ⁣ ⁣ ( m o d 29 )   ,   1 0 14 ≡ − 1  ⁣ ⁣ ( m o d 29 )   ,   1 0 28 ≡ 1  ⁣ ⁣ ( m o d 29 )   , 所 以 循 环 节 长   t = 28   。 令   1 29 = 0.   a 1 ˙ a 2 ⋯ a 28 ˙   , 利 用 定 理   5   得 : a 28 = 1   ,   ( a r b + 1 10 ) = 1 ⋅ 29 + 1 10 = 3   ;   a 27 = 3   ,   d 1 = 0   ;   a 26 = 0 + 3 ⋅ 3 = 9   , d 2 = 0   ; 由   0 + 3 ⋅ 9 = 2 ⋅ 10 + 7   , 知   a 25 = 7   ,   d 3 = 2   ; 由   2 + 3 ⋅ 7 = 2 ⋅ 10 + 3   , 知   a 24 = 3   ,   d 4 = 2   ; 由   2 + 3 ⋅ 3 = 1 ⋅ 10 + 1   , 知   a 23 = 1   ,   d 5 = 1   ; 由   1 + 3 ⋅ 1 = 4   , 知   a 22 = 4   ,   d 6 = 0   ; ⋯   ; 逐 步 可 确 定   a 21 = 2 , a 20 = 7 , a 19 = 1 , a 18 = 5 , a 17 = 5 , a 16 = 6 , a 15 = 9   ; 又   ( 29   , 1 0 14 − 1 ) = 1   , 由 定 理   4   知 :   a 1 = 0 , a 2 = 3 , a 3 = 4 , a 4 = 4 , a 5 = 8 , a 6 = 2 , a 7 = 7 , a 8 = 5 , a 9 = 8 , a 10 = 6 , a 11 = 2 , a 12 = 0 , a 13 = 6 , a 14 = 8   。 因 此   1 29 = 0.   0 ˙ 34   482   758   620   689   655   172   413   793   1 ˙    。 证:因为\,\varphi(29)=28\,,\,28\,的全部正因数是\,1,2,4,7,14,28\,,而\,10 \equiv 10 \!\! \pmod{29}\,,\,10^2 \equiv 13 \!\! \pmod{29}\,,\,10^4 \equiv -5 \!\! \pmod{29}\,,\,10^7 \equiv -12 \!\! \pmod{29}\,,\,10^{14} \equiv -1 \!\! \pmod{29}\,,\,10^{28} \equiv 1 \!\! \pmod{29}\,,所以循环节长\,t=28\,。令\,\dfrac{1}{29}=0.\,\dot{a_1}a_2\cdots \dot{a_{28}}\,,利用定理\,5\,得:a_{28}=1\,,\,(\dfrac{a_rb+1}{10})=\dfrac{1\cdot29+1}{10}=3\,;\,a_{27}=3\,,\,d_1=0\,;\,a_{26}=0+3\cdot3=9\,,d_2=0\,;由\,0+3\cdot9=2\cdot10+7\,,知\,a_{25}=7\,,\,d_3=2\,;由\,2+3\cdot7=2\cdot10+3\,,知\,a_{24}=3\,,\,d_4=2\,;由\,2+3\cdot3=1\cdot10+1\,,知\,a_{23}=1\,,\,d_5=1\,;由\,1+3\cdot1=4\,,知\,a_{22}=4\,,\,d_6=0\,;\cdots;逐步可确定\,a_{21}=2,a_{20}=7,a_{19}=1,a_{18}=5,a_{17}=5,a_{16}=6,a_{15}=9\,;又\,(29\,,10^{14}-1)=1\,,由定理\,4\,知:\,a_1=0,a_2=3,a_3=4,a_4=4,a_5=8,a_6=2,a_7=7,a_8=5,a_9=8,a_{10}=6,a_{11}=2,a_{12}=0,a_{13}=6,a_{14}=8\,。因此\,\dfrac{1}{29}=0.\,\dot{0}34\,482\,758\,620\,689\,655\,172\,413\,793\,\dot{1}\,\,。 φ(29)=28,281,2,4,7,14,28,1010(mod29),10213(mod29),1045(mod29),10712(mod29),10141(mod29),10281(mod29),t=28291=0.a1˙a2a28˙,5a28=1,(10arb+1)=10129+1=3;a27=3,d1=0;a26=0+33=9,d2=0;0+39=210+7,a25=7,d3=2;2+37=210+3,a24=3,d4=2;2+33=110+1,a23=1,d5=1;1+31=4,a22=4,d6=0;;a21=2,a20=7,a19=1,a18=5,a17=5,a16=6,a15=9;(29,10141)=1,4a1=0,a2=3,a3=4,a4=4,a5=8,a6=2,a7=7,a8=5,a9=8,a10=6,a11=2,a12=0,a13=6,a14=8291=0.0˙344827586206896551724137931˙

End

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值