【高等数学笔记】曲面积分的计算

一、第一型面积分

1. 参数方程

设曲面的方程由 r = r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) \bm r=\bm r(u,v)=(x(u,v),y(u,v),z(u,v)) r=r(u,v)=(x(u,v),y(u,v),z(u,v))给出,计算第一型面积分 ∬ ( S ) f ( x , y , z ) d S \iint\limits_{(S)}f(x,y,z)\text dS (S)f(x,y,z)dS其中 u , v u,v u,v为参数。

u , v u,v u,v在平面 u O v uOv uOv上的区域为 ( σ ) (\sigma) (σ),则 f f f是从 ( σ ) (\sigma) (σ) ( S ) (S) (S)的映射。最终结果是在区域 ( σ ) (\sigma) (σ)上做二重积分: ∬ ( S ) f ( x , y , z ) d S = ∬ ( σ ) f [ x ( u , v ) , y ( u , v ) , z ( u , v ) ] ∥ r u × r v ∥ d u d v \iint\limits_{(S)}f(x,y,z)\text dS=\iint\limits_{(\sigma)}f[x(u,v),y(u,v),z(u,v)]\|\bm r_u\times\bm r_v\|\text du\text dv (S)f(x,y,z)dS=(σ)f[x(u,v),y(u,v),z(u,v)]ru×rvdudv注意 d S = ∥ r u × r v ∥ d u d v \text dS=\|\bm r_u\times\bm r_v\|\text du\text dv dS=ru×rvdudv

2. 直角坐标方程

设曲面方程由 z = z ( x , y ) ,   ( x , y ) ∈ ( σ ) z=z(x,y),\ (x,y)\in(\sigma) z=z(x,y), (x,y)(σ)给出,则 ∬ ( S ) f ( x , y , z ) d S = ∬ ( σ ) f [ x , y , z ( x , y ) ] 1 + z x 2 + z y 2 d x d y \iint\limits_{(S)}f(x,y,z)\text dS=\iint\limits_{(\sigma)}f[x,y,z(x,y)]\sqrt{1+z_x^2+z_y^2}\text dx\text dy (S)f(x,y,z)dS=(σ)f[x,y,z(x,y)]1+zx2+zy2 dxdy计算步骤:
(1) 将曲面 ( S ) (S) (S)投影到 x O y xOy xOy面上的 ( σ ) (\sigma) (σ)球体之类的需要分成两部分计算
(2) 将 z z z x , y x,y x,y表示出来,最终式子不含 z z z
(3) 计算 z x z_x zx z y z_y zy 1 + z x 2 + z y 2 \sqrt{1+z_x^2+z_y^2} 1+zx2+zy2
(4) 做二重积分。

tip:圆锥面 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 ,其 1 + z x 2 + z y 2 ≡ 2 \sqrt{1+z_x^2+z_y^2}\equiv\sqrt2 1+zx2+zy2 2
tip x , y , z x,y,z x,y,z受曲面方程约束,如在球面 ( S ) : x 2 + y 2 + z 2 = a 2 (S):x^2+y^2+z^2=a^2 (S):x2+y2+z2=a2 ∬ ( S ) ( x 2 + y 2 + z 2 ) d S = a 2 ∬ ( S ) d S = 4 π a 4 \iint\limits_{(S)}(x^2+y^2+z^2)\text dS=a^2\iint\limits_{(S)}\text dS=4\pi a^4 (S)(x2+y2+z2)dS=a2(S)dS=4πa4
tip:曲面关于 x O y xOy xOy对称时,若被积函数是 z z z的奇函数,则积分为0;偶函数,则积分是一半部分的两倍。
tip:善用轮换对称性。
tip:被积函数是某一变量的一次方时,可利用质心(形心)坐标求解。

二、第二型曲面积分

方法一:高斯公式

首选方法。遇到曲面积分先考察散度。三重积分简单就直接高斯公式。
高斯公式 设空间有界闭区域 ( V ) (V) (V)由分片光滑的闭曲面 ( S ) (S) (S)所围成, A ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) \bm A(P(x,y,z),Q(x,y,z),R(x,y,z)) A(P(x,y,z),Q(x,y,z),R(x,y,z))具有一阶连续偏导数,则 ∭ ( V ) ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∯ ( S ) P d y d z + Q d z d x + R d x d y \iiint\limits_{(V)}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)\text dV=\oiint\limits_{(S)}P\text dy\text dz+Q\text dz\text dx+R\text dx\text dy (V)(xP+yQ+zR)dV=(S) Pdydz+Qdzdx+Rdxdy其中 ( S ) (S) (S)的法向量朝外

几大坑点:
(1) P P P x x x求偏导, Q Q Q y y y求偏导, R R R z z z求偏导,搞清楚对哪个变量求偏导
(2) 看看是不是闭曲面,不是的话要补;
(3) 看看有没有一阶连续偏导数,没有的话要挖奇点
(4) 看看法向量是不是朝外

其中(3)和(4)尤其需要注意。

方法二:定义法

一投,二代,三定号 ∬ ( S ) R ( x , y , z ) d x d y = ± ∬ ( D x y ) R [ x , y , z ( x , y ) ] d x d y \iint\limits_{(S)}R(x,y,z)\text dx\text dy=\pm\iint\limits_{(D_{xy})}R[x,y,z(x,y)]\text dx\text dy (S)R(x,y,z)dxdy=±(Dxy)R[x,y,z(x,y)]dxdy
(1) 一投:向坐标面上投影
(2) 二代:把 z z z x , y x,y x,y表示,二重积分不含 z z z
(3) 三定号:法向量与 z z z轴夹角为锐角取正,钝角取负,直角的话投影为一条线所以取 0 0 0

方法三:化为第一型面积分

∬ ( S ) ( P , Q , R ) ⋅ d S = ∬ ( S ) ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S \iint\limits_{(S)}(P,Q,R)\cdot\bold d\bm S=\iint\limits_{(S)}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\text dS (S)(P,Q,R)dS=(S)(Pcosα+Qcosβ+Rcosγ)dS详见【高等数学笔记】两类曲线积分、曲面积分的转化

方法四:将对三个坐标面的积分转化到一个坐标面上

曲面 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0的法向量为 n = ( F x , F y , F z ) \bm n=(F_x,F_y,F_z) n=(Fx,Fy,Fz)。而 e n = ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \bm e_n=(\cos\alpha,\cos\beta,\cos\gamma) en=(cosα,cosβ,cosγ),故 ∬ ( S ) P d y d z + Q d z d x + R d x d y = ∬ ( S ) ( P F y F x + Q F z F x + R ) d x d y \iint\limits_{(S)}P\text dy\text dz+Q\text dz\text dx+R\text dx\text dy=\iint\limits_{(S)}\left(P\frac{F_y}{F_x}+Q\frac{F_z}{F_x}+R\right)\text dx\text dy (S)Pdydz+Qdzdx+Rdxdy=(S)(PFxFy+QFxFz+R)dxdy特别地,当 z = z ( x , y ) z=z(x,y) z=z(x,y) F ( x , y , z ) = z ( x , y ) − z = 0 F(x,y,z)=z(x,y)-z=0 F(x,y,z)=z(x,y)z=0时, F z = − 1 F_z=-1 Fz=1,有 ∬ ( S ) P d y d z + Q d z d x + R d x d y = ∬ ( S ) ( − P z x − Q z y + R ) d x d y \iint\limits_{(S)}P\text dy\text dz+Q\text dz\text dx+R\text dx\text dy=\iint\limits_{(S)}\left(-Pz_x-Qz_y+R\right)\text dx\text dy (S)Pdydz+Qdzdx+Rdxdy=(S)(PzxQzy+R)dxdy
tip:对于 ∬ ( S ) R ( x , y , z ) d x d y \iint\limits_{(S)}R(x,y,z)\text dx\text dy (S)R(x,y,z)dxdy,若曲面 ( S ) (S) (S)关于 x O y xOy xOy面对称,且 R R R z z z偶函数,则积分为 0 0 0

  • 10
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值