神经网络与深度学习-课程内容总结2

之前介绍的全连接网络会出现权值多,算的慢,难收敛,易进入局部最小值或产生过拟合的问题。

因此要引入卷积神经网络。

深度学习和卷积神经网络的基本概念:

1.卷积部分:理解卷积的特征提取功能,理解填充(padding),步长(Stride),多通道卷积计算方法

2.池化部分(Pooling):局部统计特征,如均值或最大值,解决特征过多的问题。

卷积神经网络结构:由多个卷积层和下采样层构成,用作特征提取,后面可以连接全连接网络。

卷积神经网络的前向传播只需要在原基础上改变α,即可获得公式。

卷积层和池化层的反向传播也可以分别得到。

LeNet-5网络

• 输入层: LeNet5 网络的输入为32 × 32 大小的图像,比MNIST 数据集的图片稍微大一些。
• C1 层( 卷积层):使用6 个大小为5 × 5 的卷积核对输入图像进行卷积操作,卷积后得到的特征图尺寸为28 ,因此产生6 个大小为28 × 28 的特征图。

• S2 层( Pooling 层):这里采用Max Pooling 操作, Pooling 窗口大小为2 × 2 。经过Pooling 层后得到6 个14 × 14 的特征图,作为下一层的输入。

• C3 层(卷积层):使用16 个大小为5 × 5 的卷积核对输入的特征图进行卷积操作。值得注意的是, C3 中输出的特征图是S2 中的特征图进行加权组合得到的。卷积的维数有3、4、5三种,共同作用,输出为16 个10 × 10 的特征图。

• S4 层( Pooling 层):同样采用Max Pooling 操作, Pooling 窗口大小为2 × 2 。最后输出16 个5 × 5 的特征图,神经元个数为400 ( 16 × 5 × 5 )。

• C5 层(全连接层):该层可以理解对S4 层产生的特征向量进行拉伸,每一个像素代表一个神经元,使用全连接操作输出特征为120 个神经元。

• F6 层:该层与C5 层进行全连接,输出特征为84 个神经元。

• 输出层:该层与F6 层全连接,输出长度为10,代表所抽取的特征属于哪个类别。

AlexNet网络

 AlexNet与LeNet很相似,在AlexNet的第一层,卷积窗口的形状是11×11。由于ImageNet中大多数图像的宽和高MNIST图像的多10倍以上,因此,需要一个更大的卷积窗口来捕获目标。第二层中的卷积窗口形状被缩减为5 × 5,然后是3 × 3。此外,在第一层、第二层和第五层卷积层之后,加入窗口形状为3 × 3、步幅为2的最大汇聚层。而且, AlexNet的卷积通道数目是LeNet的10倍。 

除此之外,相对LeNet,AlexNet还有池化层均采用最大池化、选用ReLU作为非线性环节激活函数、网络规模扩大,参数数量接近6000万、出现“多个卷积层+一个池化层”的结构等改进。

  • 10
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值