坐标系类型
- 世界坐标系:指的就是真实世界中的一个坐标系,单位是m,其中任意一点及其坐标表示为 P w = [ X w , Y w , Z w ] T P_w=[X_w,Y_w,Z_w]^T Pw=[Xw,Yw,Zw]T
- 相机坐标系:以光圈 O O O为原点的右手坐标系(一般都是右手坐标系,当然也可以是左手),z轴一般与光轴重合(与成像平面垂直),单位为m,其中任意一点及其坐标表示为 P c = [ X c , Y c , Z c ] T P_c=[X_c,Y_c,Z_c]^T Pc=[Xc,Yc,Zc]T
- 图像物理坐标系:就是虚拟成像平面上的坐标系,是一个二维坐标系,原点在虚拟成像平面中心,单位是mm,相当于是用物理单位来描述像素的位置,其上任意一点的坐标可表示为 P = [ x , y ] T P=[x,y]^T P=[x,y]T
- 像素平面坐标系:就是最后的数字图像上的二维坐标系,一般坐标原点在图像的左上角,单位是像素,从图像物理坐标系到像素平面坐标系,存在一个缩放和平移,其上任意一点的坐标表示为 p = [ u , v ] T p=[u,v]^T p=[u,v]T
`
世界坐标系—>像素坐标系
1. 从世界坐标系转换到相机坐标系
二者处于同一空间,只是位置和方向不同,因此只需要旋转和平移操作。通过 W 2 C W2C W2C外参矩阵完成,将世界坐标系中的点转换到相机坐标系中
假设世界坐标系中的点为 ( X w , Y w , Z w ) (X_w, Y_w, Z_w) (Xw,Yw,Zw),相机坐标系中的点为 ( X c , Y c , Z c ) (X_c, Y_c, Z_c) (Xc,Yc,Zc)
W2C = ( R T 0 1 ) \text{W2C} = \begin{pmatrix} R & T \\ 0 & 1 \end{pmatrix} W2C=(R0T1)
其中:
- R R R 是3x3的旋转矩阵,描述相机的旋转
- T T T 是3x1的平移向量,描述相机在世界坐标系中的位置
转换过程如下:
( X c Y c Z c 1 ) = W2C ( X w Y w Z w 1 ) \begin{pmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{pmatrix} = \text{W2C} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}