SLAM~CH6

目录

非线性优化

最小二乘法的引入

1. 几个名词的定义:

2. 思路

3. 数学描述

解决最小二乘的方法

1. 梯度法

​ 2. 牛顿法

3. 高斯牛顿法

4. 列文伯格-马夸尔特法


非线性优化

最小二乘法的引入

1. 几个名词的定义:

1)先验:根据0~k-1时刻的各种数据来推测k时刻的状态

2)后验:结合了k时刻观测数据的k时刻状态

3)似然:在怎么样的位姿下,可能产生怎么样的观测数据

2. 思路

想知道在已知观测数据z(比如在图像中的位置)的情况下,估计系统的状态(比如它的位姿),这就是后验概率,想根据z直接求位姿是比较困难的。但我们可以用似然的思路来解决,就比如不停的试各种状态,看看是在什么样的状态下,最有可能产生现在观测到的数据。找到这个状态了,那就是我要求的位姿了。为了找到一个x和y(位姿和地标),使得利用它们产生的观测数据z‘最接近目前直接观测到的z,那这样的x和y不就是我们需要的吗。

用概率学的观点看,即是已知输入数据u和观测数据z的条件下,求x,y的条件概率分布。 即:P(x,y|z,u),也是后验

由贝叶斯法则P(A|B)=\frac{P(AB)}{P(B)}=\frac{P(B|A)P(A)}{P(B)}                because:P(B|A)=\frac{P(AB)}{P(A)}

所以

 问题转化为怎么样的x,y使得P(z,u|x,y)P(x,y)最大,相当于最大化似然与先验的乘积。

最大化似然估计的的理解是:“在什么样的状态下最有可能产生现在的数据

3. 数学描述

 因而得到了一个最小二乘的问题

解决最小二乘的方法

1. 梯度法

 2. 牛顿法

3. 高斯牛顿法

4. 列文伯格-马夸尔特法

 

 高斯牛顿法的代码实战

求带估计的变量a,b,c使之最吻合 y=exp(ax^2+bx+c)+\omega

理论思路

1. 转化问题为

 2. 定义e=y-exp(ax^2+bx+c)

3. 得到J

4. 解方程

 代码思路

 已知真正的a,b,c

double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值

1. 将数据真实数据存入数组

 vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;
    x_data.push_back(x);
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
  }

2. 给定初始值

 double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值

3. 求每一个点的梯度并叠加求H和g(这里要的是整个曲线的误差

for (int i = 0; i < N; i++) {
      double xi = x_data[i], yi = y_data[i];  // 第i个数据点
      double error = yi - exp(ae * xi * xi + be * xi + ce);
      Vector3d J; // 雅可比矩阵
      J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce);  // de/da
      J[1] = -xi * exp(ae * xi * xi + be * xi + ce);  // de/db
      J[2] = -exp(ae * xi * xi + be * xi + ce);  // de/dc

      H += inv_sigma * inv_sigma * J * J.transpose();
      b += -inv_sigma * inv_sigma * error * J;

      cost += error * error;
    }

4. 解线性方程组

 // 求解线性方程 Hx=b
    Vector3d dx = H.ldlt().solve(b);

5. 判断误差是否大于上一次迭代的误差,若是,跳出循环

if (iter > 0 && cost >= lastCost) {
      cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
      break;
    }

6. 若否:迭代点变化

ae += dx[0];
be += dx[1];
ce += dx[2];
lastCost = cost;

整体代码如下 

#include <iostream>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;
  cv::RNG rng;                                 // OpenCV随机数产生器

  vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;
    x_data.push_back(x);
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
  }

  // 开始Gauss-Newton迭代
  int iterations = 100;    // 迭代次数
  double cost = 0, lastCost = 0;  // 本次迭代的cost和上一次迭代的cost

  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  for (int iter = 0; iter < iterations; iter++) {

    Matrix3d H = Matrix3d::Zero();             // Hessian = J^T W^{-1} J in Gauss-Newton
    Vector3d b = Vector3d::Zero();             // bias
    cost = 0;

    for (int i = 0; i < N; i++) {
      double xi = x_data[i], yi = y_data[i];  // 第i个数据点
      double error = yi - exp(ae * xi * xi + be * xi + ce);
      Vector3d J; // 雅可比矩阵
      J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce);  // de/da
      J[1] = -xi * exp(ae * xi * xi + be * xi + ce);  // de/db
      J[2] = -exp(ae * xi * xi + be * xi + ce);  // de/dc

      H += inv_sigma * inv_sigma * J * J.transpose();
      b += -inv_sigma * inv_sigma * error * J;

      cost += error * error;
    }

    // 求解线性方程 Hx=b
    Vector3d dx = H.ldlt().solve(b);
    if (isnan(dx[0])) {
      cout << "result is nan!" << endl;
      break;
    }

    if (iter > 0 && cost >= lastCost) {
      cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
      break;
    }

    ae += dx[0];
    be += dx[1];
    ce += dx[2];

    lastCost = cost;

    cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose() <<
         "\t\testimated params: " << ae << "," << be << "," << ce << endl;
  }

  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
  return 0;
}

用ceres库解上述问题

代码思路

 1. 定义参数模型的计算方式

struct CURVE_FITTING_COST
{
    CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {}
    // 残差的计算
    template <typename T>
    bool operator() (
        const T* const abc,     // 模型参数,有3维 当没有必要分类的时候 就用一个数组来存储未知的系数,方便管理,而不是设3个变量,之后在()重载函数的形式参数个数变为3个
        T* residual ) const     // 残差
    {
        residual[0] = T ( _y ) - ceres::exp ( abc[0]*T ( _x ) *T ( _x ) + abc[1]*T ( _x ) + abc[2] ); // y-exp(ax^2+bx+c)
        return true;
    }
    const double _x, _y;    // x,y数据
};

2. 定义参数块

double abc[3] = {0.8,2.1,0.9};      // abc参数的估计值

3. 构建最小二乘问题

problem.AddResidualBlock(代价函数,核函数,参数块)

ceres::Problem problem;
    for ( int i=0; i<N; i++ )
    {
        problem.AddResidualBlock (     // 向问题中添加误差项
/*使用自动求导,模板参数:误差类型,Dimension of residual(输出维度 表示有几类残差,本例程中就一类残差项目,所以为1),*/
//输入维度,维数要与前面struct中一致
                /*这里1 代表*/
       new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3> ( 
       new CURVE_FITTING_COST ( x_data[i], y_data[i] )// x_data[i], y_data[i] 代表输入的获得的试验数据
            ),
        nullptr,            // 核函数,这里不使用,为空  这里是LossFunction的位置
           abc                 // 待估计参数3维
        );
    }

4. 配置求解器

    ceres::Solver::Options options;     // 在Options类中可以设置关于求解器的参数
    options.linear_solver_type = ceres::DENSE_QR;  // 增量方程如何求解
    options.minimizer_progress_to_stdout = true;   // 为真时 内部错误输出到cout
    ceres::Solver::Summary summary;                // 优化信息

 5. 开始优化

ceres::Solve(配置项,问题地址,输出地址)

ceres::Solve ( options, &problem, &summary );  // 开始优化

 全代码

注释部分来自:视觉SLAM十四讲ch6曲线拟合 代码注释_Night___Raid的博客-CSDN博客

// ceres 版本
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>
#include <chrono>
 
using namespace std;
 
// 代价函数的计算模型
struct CURVE_FITTING_COST
{
    CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {}
    // 残差的计算
    template <typename T>
    bool operator() (
        const T* const abc,     // 模型参数,有3维 当没有必要分类的时候 就用一个数组来存储未知的系数,方便管理,而不是设3个变量,之后在()重载函数的形式参数个数变为3个
        T* residual ) const     // 残差
    {
        residual[0] = T ( _y ) - ceres::exp ( abc[0]*T ( _x ) *T ( _x ) + abc[1]*T ( _x ) + abc[2] ); // y-exp(ax^2+bx+c)
        return true;
    }
    const double _x, _y;    // x,y数据
};
 
int main ( int argc, char** argv )
{
    double a=1.0, b=2.0, c=1.0;         // 真实参数值
    int N=100;                          // 数据点
    double w_sigma=1.0;                 // 噪声Sigma值(根号下方差)
    cv::RNG rng;                        // OpenCV随机数产生器
    double abc[3] = {0.8,2.1,0.9};      // abc参数的估计值 (修改初始值 下面求解迭代过程会不同)
 
    vector<double> x_data, y_data;      // 数据
 
    /*生成符合曲线的样本*/
    cout<<"generating data: "<<endl;   //下面是从真实的曲线中取得样本数据
    for ( int i=0; i<N; i++ )
    {
        double x = i/100.0;
        x_data.push_back ( x );
        y_data.push_back (
            exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma )
        );
        //cout<<x_data[i]<<" "<<y_data[i]<<endl;//输出生成数据
    }
 
    // 构建最小二乘问题
    ceres::Problem problem;
    for ( int i=0; i<N; i++ )
    {
        /* 第一个参数 CostFunction* : 描述最小二乘的基本形式即代价函数 例如书上的116页fi(.)的形式
         * 第二个参数 LossFunction* : 描述核函数的形式 例如书上的ρi(.)
         * 第三个参数 double* :       待估计参数(用数组存储)
         * 这里仅仅重载了三个参数的函数,如果上面的double abc[3]改为三个double a=0 ,b=0,c = 0;
         * 此时AddResidualBlock函数的参数除了前面的CostFunction LossFunction 外后面就必须加上三个参数 分别输入&a,&b,&c
         * 那么此时下面的 ceres::AutoDiffCostFunction<>模板参数就变为了 <CURVE_FITTING_COST,1,1,1,1>后面三个1代表有几类未知参数
         * 我们修改为了a b c三个变量,所以这里代表了3类,之后需要在自己写的CURVE_FITTING_COST类中的operator()函数中,
         * 把形式参数变为了const T* const a, const T* const b, const T* const c ,T* residual
         * 上面修改的方法与本例程实际上一样,只不过修改的这种方式显得乱,实际上我们在用的时候,一般都是残差种类有几个,那么后面的分类 就分几类
         * 比如后面讲的重投影误差,此事就分两类 一类是相机9维变量,一类是点的3维变量,然而残差项变为了2维
         *
         * (1): 修改后的写法(当然自己定义的代价函数要对应修改重载函数的形式参数,对应修改内部的残差的计算):
         *      ceres::CostFunction* cost_function
         *              = new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 1 ,1 ,1>(
         *                  new CURVE_FITTING_COST ( x_data[i], y_data[i] ) );
         *      problem.AddResidualBlock(cost_function,nullptr,&a,&b,&c);
         * 修改后的代价函数的计算模型:
         *   struct CURVE_FITTING_COST
         *   {
         *       CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {}
         *       // 残差的计算
         *       template <typename T>
         *       bool operator() (
         *          const T* const a,
         *          const T* const b,
         *          const T* const c,
         *          T* residual   ) const     // 残差
         *       {
         *           residual[0] = T ( _y ) - ceres::exp ( a[0]*T ( _x ) *T ( _x ) + b[0]*T ( _x ) + c[0] ); // y-exp(ax^2+bx+c)
         *           return true;
         *       }
         *       const double _x, _y;    // x,y数据
         *   };//代价类结束
         *
         *
         * (2): 本例程下面的语句通常拆开来写(看起来方便些):
         * ceres::CostFunction* cost_function
         *              = new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3>(
         *                  new CURVE_FITTING_COST ( x_data[i], y_data[i] ) );
         * problem.AddResidualBlock(cost_function,nullptr,abc)
         * */
        problem.AddResidualBlock (     // 向问题中添加误差项
        // 使用自动求导,模板参数:误差类型,Dimension of residual(输出维度 表示有几类残差,本例程中就一类残差项目,所以为1),输入维度,维数要与前面struct中一致
                /*这里1 代表*/
            new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3> ( 
                new CURVE_FITTING_COST ( x_data[i], y_data[i] )// x_data[i], y_data[i] 代表输入的获得的试验数据
            ),
            nullptr,            // 核函数,这里不使用,为空  这里是LossFunction的位置
            abc                 // 待估计参数3维
        );
    }
 
    // 配置求解器ceres::Solver (是一个非线性最小二乘的求解器)
    ceres::Solver::Options options;     // 这里有很多配置项可以填Options类嵌入在Solver类中 ,在Options类中可以设置关于求解器的参数
    options.linear_solver_type = ceres::DENSE_QR;  // 增量方程如何求解 这里的linear_solver_type 是一个Linear_solver_type的枚举类型的变量
    options.minimizer_progress_to_stdout = true;   // 为真时 内部错误输出到cout,我们可以看到错误的地方,默认情况下,会输出到日志文件中保存
 
    ceres::Solver::Summary summary;                // 优化信息
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();//记录求解时间间隔
    //cout<<endl<<"求解前....."<<endl;
    /*下面函数需要3个参数:
     * 1、 const Solver::Options& options <----> optione
     * 2、 Problem* problem               <----> &problem
     * 3、 Solver::Summary* summary       <----> &summart (即使默认的参数也需要定义该变量 )
     * 这个函数会输出一些迭代的信息。
     * */
    ceres::Solve ( options, &problem, &summary );  // 开始优化
    //cout<<endl<<"求解后....."<<endl;
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );
    cout<<"solve time cost = "<<time_used.count()<<" seconds. "<<endl;
 
    // 输出结果
    // BriefReport() : A brief one line description of the state of the solver after termination.
    cout<<summary.BriefReport() <<endl;
    cout<<"estimated a,b,c = ";
    /*auto a:abc  或者下面的方式都可以*/
    for ( auto &a:abc ) cout<<a<<" ";
    cout<<endl;
 
    return 0;
}

g2o求解上述问题

看不太懂,前面的区域以后再来探索吧

习题答案

1. 证明Ax=b超定时,最小二乘解为:x=(AA^T)^{-1}A^Tb

答案

2. 梯度法、牛顿法、高斯牛顿法、列-马法的优缺点

最速下降法、牛顿法:优:直观方便,求解增量时只需解线性方程即可。

最速下降法:缺:可能增加迭代次数。

牛顿法:缺:需要计算目标函数的海塞矩阵,在问题规模较大时非常困难。

高斯牛顿法:优:用J^TJ作为牛顿法H矩阵的近似,简化了计算。

      缺:实际中该近似只有半正定性。

列文伯格-马夸尔特法:优:一定程度上避免系数矩阵的非奇异和病态问题。

           缺:收敛速度较慢。

3.  

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值