2025最新版微软GraphRAG 2.0.0本地部署教程:基于Ollama快速构建知识图谱

一、前言

微软近期发布了知识图谱工具 GraphRAG 2.0.0,支持基于本地大模型(Ollama)快速构建知识图谱,显著提升了RAG(检索增强生成)的效果。本文手把手教你如何从零部署,并附踩坑记录和性能实测!

二、环境准备

1. 创建虚拟环境

推荐使用 Python 3.12.4(亲测兼容性较佳):

conda create -n graphrag200 python=3.12.4
conda activate graphrag200

2. 拉取源码

建议通过Git下载最新代码(Windows用户需提前安装Git):

git clone https://github.com/microsoft/graphrag.git
cd graphrag

    (附:若直接下载压缩包解压,解压完后需创建一个仓库,不然后续会报错)

        创建仓库方法:

git init
git add .
git commit -m "Initial commit"

3. 安装依赖

一键安装所需依赖包:

pip install -e .

4. 创建输入文件夹

用于存放待处理的文档(Windows可以直接手动创建):

mkdir -p ./graphrag_ollama/input

将数据集放入input目录即可。

三、关键配置修改

1. 初始化项目

执行初始化命令(注意与旧版参数不同):

python -m graphrag init --root ./graphrag_ollama

2. 修改settings.yaml

核心配置项(需按需调整)

  • 模型设置:使用Ollama本地模型

 注意修改一下圈出的几个地方

测试小文件时,建议把chunks改小:

 修改结果如下:

  • ### This config file contains required core defaults that must be set, along with a handful of common optional settings.
    ### For a full list of available settings, see https://microsoft.github.io/graphrag/config/yaml/
    
    ### LLM settings ###
    ## There are a number of settings to tune the threading and token limits for LLM calls - check the docs.
    
    models:
      default_chat_model:
        type: openai_chat # or azure_openai_chat
        api_base: http://192.168.0.167:11434/v1
        # api_version: 2024-05-01-preview
        auth_type: api_key # or azure_managed_identity
        api_key: ${GRAPHRAG_API_KEY} # set this in the generated .env file
        # audience: "https://cognitiveservices.azure.com/.default"
        # organization: <organization_id>
        model: deepseek-r1:32b
        # deployment_name: <azure_model_deployment_name>
        encoding_model: cl100k_base # automatically set by tiktoken if left undefined
        model_supports_json: true # recommended if this is available for your model.
        concurrent_requests: 25 # max number of simultaneous LLM requests allowed
        async_mode: threaded # or asyncio
        retry_strategy: native
        max_retries: -1                   # set to -1 for dynamic retry logic (most optimal setting based on server response)
        tokens_per_minute: 0              # set to 0 to disable rate limiting
        requests_per_minute: 0            # set to 0 to disable rate limiting
      default_embedding_model:
        type: openai_embedding # or azure_openai_embedding
        api_base: http://192.168.0.167:11434/v1
        # api_version: 2024-05-01-preview
        auth_type: api_key # or azure_managed_identity
        api_key: ${GRAPHRAG_API_KEY}
        # audience: "https://cognitiveservices.azure.com/.default"
        # organization: <organization_id>
        model: bge-m3:latest
        # deployment_name: <azure_model_deployment_name>
        encoding_model: cl100k_base # automatically set by tiktoken if left undefined
        model_supports_json: true # recommended if this is available for your model.
        concurrent_requests: 25 # max number of simultaneous LLM requests allowed
        async_mode: threaded # or asyncio
        retry_strategy: native
        max_retries: -1                   # set to -1 for dynamic retry logic (most optimal setting based on server response)
        tokens_per_minute: 0              # set to 0 to disable rate limiting
        requests_per_minute: 0            # set to 0 to disable rate limiting
    
    vector_store:
      default_vector_store:
        type: lancedb
        db_uri: output\lancedb
        container_name: default
        overwrite: True
    
    embed_text:
      model_id: default_embedding_model
      vector_store_id: default_vector_store
    
    ### Input settings ###
    
    input:
      type: file # or blob
      file_type: text # or csv
      base_dir: "input"
      file_encoding: utf-8
      file_pattern: ".*\\.txt$$"
    
    chunks:
      size: 200
      overlap: 50
      group_by_columns: [id]
    
    ### Output settings ###
    ## If blob storage is specified in the following four sections,
    ## connection_string and container_name must be provided
    
    cache:
      type: file # [file, blob, cosmosdb]
      base_dir: "cache"
    
    reporting:
      type: file # [file, blob, cosmosdb]
      base_dir: "logs"
    
    output:
      type: file # [file, blob, cosmosdb]
      base_dir: "output"
    
    ### Workflow settings ###
    
    extract_graph:
      model_id: default_chat_model
      prompt: "prompts/extract_graph.txt"
      entity_types: [organization,person,geo,event]
      max_gleanings: 1
    
    summarize_descriptions:
      model_id: default_chat_model
      prompt: "prompts/summarize_descriptions.txt"
      max_length: 500
    
    extract_graph_nlp:
      text_analyzer:
        extractor_type: regex_english # [regex_english, syntactic_parser, cfg]
    
    extract_claims:
      enabled: false
      model_id: default_chat_model
      prompt: "prompts/extract_claims.txt"
      description: "Any claims or facts that could be relevant to information discovery."
      max_gleanings: 1
    
    community_reports:
      model_id: default_chat_model
      graph_prompt: "prompts/community_report_graph.txt"
      text_prompt: "prompts/community_report_text.txt"
      max_length: 2000
      max_input_length: 8000
    
    cluster_graph:
      max_cluster_size: 10
    
    embed_graph:
      enabled: false # if true, will generate node2vec embeddings for nodes
    
    umap:
      enabled: false # if true, will generate UMAP embeddings for nodes (embed_graph must also be enabled)
    
    snapshots:
      graphml: false
      embeddings: false
    
    ### Query settings ###
    ## The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.
    ## See the config docs: https://microsoft.github.io/graphrag/config/yaml/#query
    
    local_search:
      chat_model_id: default_chat_model
      embedding_model_id: default_embedding_model
      prompt: "prompts/local_search_system_prompt.txt"
    
    global_search:
      chat_model_id: default_chat_model
      map_prompt: "prompts/global_search_map_system_prompt.txt"
      reduce_prompt: "prompts/global_search_reduce_system_prompt.txt"
      knowledge_prompt: "prompts/global_search_knowledge_system_prompt.txt"
    
    drift_search:
      chat_model_id: default_chat_model
      embedding_model_id: default_embedding_model
      prompt: "prompts/drift_search_system_prompt.txt"
      reduce_prompt: "prompts/drift_search_reduce_prompt.txt"
    
    basic_search:
      chat_model_id: default_chat_model
      embedding_model_id: default_embedding_model
      prompt: "prompts/basic_search_system_prompt.txt"
    

    四、构建知识图谱

    执行索引命令(算力警告:亲测4090-24G显卡处理2万字需3小时):

    python -m graphrag index --root ./graphrag_ollama

    五、知识图谱查询

    支持多种查询方式,按需选择:

  • 方法命令示例用途
    全局查询python -m graphrag query --method global --query "知识图谱定义"跨文档综合分析
    局部查询python -m graphrag query --method local --query "知识图谱定义"单文档精准检索
    DRIFT查询python -m graphrag query --method drift --query "知识图谱定义"动态漂移分析
    基础查询python -m graphrag query --method basic --query "知识图谱定义"传统RAG检索

六、注意事项

  1. 模型路径:确保Ollama服务已启动,且模型名称与配置一致(如deepseek-r1:32b需提前拉取)。

  2. 算力需求:小规模数据集建议使用GPU加速,CPU模式耗时可能成倍增加。

  3. 文件编码:输入文档需为UTF-8编码,否则可能报错。

  4. 配置备份:修改settings.yaml前建议备份原始文件。

七、总结

GraphRAG 2.0.0大幅优化了知识图谱的构建效率,结合本地模型可实现隐私安全的行业级应用。若遇到部署问题,欢迎在评论区留言交流!

相关资源

 GraphRAG GitHub仓库

Ollama模型库

原创声明:本文为作者原创,未经授权禁止转载。如需引用请联系作者。


点赞关注,技术不迷路! 👍
你的支持是我更新的最大动力! ⚡

评论 62
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值