数据集加载--load_digits

该博客介绍了如何使用sklearn.datasets.load_digits加载数字数据集,包括参数n_class用于指定返回的数字种类,return_X_y控制返回数据格式,as_frame决定是否返回DataFrame对象。返回的数据包括扁平化的数据矩阵、标签、特征和目标类别的名称,以及原始图像数据。示例展示了如何获取数据的形状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sklearn.datasets.load_digits(*, n_class=10, return_X_y=False, as_frame=False)

加载并返回数字数据集

主要参数

n_class

返回的数字种类

return_X_y

bool,False

如果设置为True,返回(data,target),
如果设置为False, 返回一个Bunch对象

as_frame

bool,False

如果设置为True,返回的数据将是一个(包含一列数据类型)DataFrame对象,target将根据标签的列数返回一个DataFrame对象或者Series对象

返回值

return_X_y=True

返回(data, target)

return_X_y=False

返回一个Bunch对象

Bunch对象的属性

data

{ndarray, dataframe} of shape (1797, 64)

扁平数据矩阵, 如果as_frame=True,该属性将会是一个DataFrame对象

target

{ndarray, Series} of shape (1797,)
标签种类. 如果as_frame=True,该属性将会是一个Series对象

feature_names: list

数据集列名称

target_names: list

标签类名称

frame:

DataFrame of shape (1797, 65)

当as_frame=True时才会有该属性.

images

{ndarray} of shape (1797, 8, 8)
原始数据图像

使用举例

from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape
>>> (1797, 64)
x=digits.data
y=digits.target

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夺笋123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值