文章目录
Lecture 8 虚拟变量回归
8.1 虚拟解释变量
虚拟变量定义
虚拟变量陷阱:实质是完全多重共线性
虚拟解释变量的回归
加法类型
乘法类型
虚拟解释变量综合应用
-
结构变化分析
-
交互效应分析
交互项:
C = α + β Y + u C=\alpha+\beta Y+u C=α+βY+u
β = β 1 + β 2 Z \beta=\beta_1+\beta_2Z β=β1+β2Z
⇒ C = α + ( β 1 + β 2 Z ) Y + u = α + β 1 Y + β 2 Y Z + u \Rightarrow C=\alpha+(\beta_1+\beta_2Z)Y+u=\alpha+\beta_1Y+\beta_2YZ+u ⇒C=α+(β1+β2Z)Y+u=α+β1Y+β2YZ+u
刻画交互作用的方法,在变量为定性变量时, 是以乘法方式引入虚拟变量的。
-
分段回归分析
常用于时间序列,引入虚拟变量能够区分不同时期的影响的差别,而且两个时期的回归直线在1979年的观测值上交汇。知道一组转折点自变量和应变量的观测值 ( X 1979 , Y 1979 ) = ( X ∗ , Y ∗ ) (X_{1979},Y_{1979})=(X^*,Y^*) (X1979,Y1979)=(X∗,Y∗),创建一个虚拟变量:
D t = { 0 t < 1979 1 t ≥ 1979 Y t = β 0 + β 1 X t + β 2 ( X t − X ∗ ) D t + u t D_t= \begin{cases} 0& t<1979\\ 1& t\geq1979 \end{cases}\\ Y_t=\beta_0+\beta_1X_t+\beta_2(X_t-X^*)D_t+u_t Dt={ 01t<1979t≥1979Yt=