【中级计量经济学】Lecture 1 计量经济学初步

Lecture 1 计量经济学初步

1.0 其他问题或归纳

ESS (Explained Sum of Squares) = SSR (Sum of Squares from Regression) 回归平方和

RSS (Residual Sum of Squares) = SSE (Sum of Squares from Errors) 残差平方和

TSS=ESS+RSS=SSR+SSE=SST

R 2 = E S S T S S = S S R S S T R^2=\frac{ESS}{TSS}=\frac{SSR}{SST} R2=TSSESS=SSTSSR

含对数形式的回归模型:

y = β 0 + β 1 x y=\beta_0+\beta_1x y=β0+β1x Δ x = 1 , Δ y = β 1 \Delta x=1,\Delta y=\beta_1 Δx=1,Δy=β1

y = β 0 + β 1 log ⁡ x y=\beta_0+\beta_1\log x y=β0+β1logx Δ x = 1 % , Δ y = β 1 100 \Delta x=1\%,\Delta y=\frac{\beta_1}{100} Δx=1%,Δy=100β1

log ⁡ y = β 0 + β 1 x \log y=\beta_0+\beta_1 x logy=β0+β1x Δ x = 1 , Δ y = 100 β 1 % \Delta x=1,\Delta y=100\beta_1\% Δx=1,Δy=100β1%

log ⁡ y = β 0 + β 1 log ⁡ x \log y=\beta_0+\beta_1\log x logy=β0+β1logx Δ x = 1 % , Δ y = β 1 % \Delta x=1\%,\Delta y=\beta_1\% Δx=1%,Δy=β1%

交互项:

C = α + β Y + u C=\alpha+\beta Y+u C=α+βY+u

β = β 1 + β 2 Z \beta=\beta_1+\beta_2Z β=β1+β2Z

⇒ C = α + ( β 1 + β 2 Z ) Y + u = α + β 1 Y + β 2 Y Z + u \Rightarrow C=\alpha+(\beta_1+\beta_2Z)Y+u=\alpha+\beta_1Y+\beta_2YZ+u C=α+(β1+β2Z)Y+u=α+β1Y+β2YZ+u

刻画交互作用的方法,在变量为定性变量时, 是以乘法方式引入虚拟变量的。

  • 回归方程括号里的是回归系数的标准差 S β ^ 1 S_{\hat\beta_1} Sβ^1 t t t统计量 t = β ^ 1 σ ^ 2 ∑ x i 2 = β ^ 1 S β ^ 1 ∼ t ( n − 2 ) t=\frac{\hat\beta_1}{\sqrt{\dfrac{\hat\sigma^2}{\sum x_i^2}}}=\frac{\hat\beta_1}{S_{\hat\beta_1}}\sim t(n-2) t=xi2σ^2 β^1=Sβ^1β^1t(n2)

    临界 t t t统计量是双侧检验,临界值为 t α / 2 ( n ) t_{\alpha/2}(n) tα/2(n)

    α = 10 % \alpha=10\% α=10%显著性水平, n = ∞ n=\infty n= t α / 2 ( n ) = t 0.05 ( n ) = 1.645 t_{\alpha/2}(n)=t_{0.05}(n)=1.645 tα/2(n)=t0.05(n)=1.645

    α = 5 % \alpha=5\% α=5%显著性水平, n = ∞ n=\infty n= t α / 2 ( n ) = t 0.025 ( n ) = 1.96 t_{\alpha/2}(n)=t_{0.025}(n)=1.96 tα/2(n)=t0.025(n)=1.96

    t统计量的绝对值大于临界值,拒绝原假设( H 0 : β 1 = 0 H_0:\beta_1=0 H0:β1=0,解释变量的回归系数不显著),说明解释变量显著,通过显著性检验。

    t统计量大于3一般都可以通过显著性检验,小于1一般无法通过显著性检验。

  • F F F统计量可以用拟合优度 R 2 R^2 R2以及样本数量 n n n以及(显式)变量数 k k k计算:
    F = ( T S S − R S S ) / k R S S / ( n − k − 1 ) = R 2 / k ( 1 − R 2 ) / ( n − k − 1 ) F=\frac{(TSS-RSS)/k}{RSS/(n-k-1)}=\frac{R^2/k}{(1-R^2)/(n-k-1)} F=RSS/(nk1)(TSSRSS)/k=(1R2)/(nk1)R2/k
    F统计量总是单变的,越大越显著。

古典线性回归模型的基本假定:

CLM1:参数线性关系

CLM2:随机样本,样本选择又变异性

CLM3:满秩(否则,存在多重共线性)

CLM4:误差项条件均值为零

​ (前提假设是误差项无条件均值为0且与解释变量无关,否则,存在内生性问题)

CLM5:误差项同方差和无自相关(否则,存在异方差和自相关)

CLM6:误差项正态分布

  • 满足1-4,OLS估计无偏(异方差和自相关OLS仍然无偏)
  • 满足1-5,OLS估计BLUS(最优线性无偏估计),估计量有效。(高斯马尔可夫定理)
  • 满足1-6,古典线性回归模型的基本假定

1.1 一元线性回归计算

区分四个概念:

  • 总体回归线:估计给定 X X X时的条件期望。
    f ( X ) = E ( Y ∣ X ) = β 0 + β 1 X . f(X)=E(Y|X)=\beta_0+\beta_1X. f(X)=E(YX)=β0+β1X.

  • 总体回归模型:用于描述每一个个体回归模型,加入了随机误差项。
    Y i = β 0 + β 1 X i + μ i . Y_i=\beta_0+\beta_1X_i+\mu_i. Yi=β0+β1Xi+μi.

  • 样本回归线:由样本计算出的用于估计总体回归线的函数。
    Y ^ = β ^ 0 + β ^ 1 X . \hat{Y}=\hat\beta_0+\hat\beta_1X. Y^=β^0+β^1X.

  • 样本回归模型:用于解释每一个样本的样本回归模型,加入了残差。
    Y i = β ^ 0 + β ^ 1 X + e i . Y_i=\hat\beta_0+\hat\beta_1X+e_i. Yi=β^0+β^1X+ei.

模型估计

经典假设(前四条称高斯-马尔科夫假设):

  1. 回归模型是正确设定的。
  2. 解释变量 X X X在所抽取的样本中具有变异性,样本方差趋于非零常数。
  3. 对给定 X X X的任何值,随机干扰项零均值: E ( μ i ∣ X ) = 0 \mathrm{E}(\mu_i|X)=0 E(μiX)=0
  4. 对给定 X X X的任何值,随机干扰项同方差、序列不相关: V a r ( μ i ∣ X ) = σ 2 \mathrm{Var}(\mu_i|X)=\sigma^2 Var(μiX)=σ2 C o v ( μ i , μ j ∣ X ) = 0 \mathrm{Cov}(\mu_i,\mu_j|X)=0 Cov(μi,μjX)=0
  5. 随机干扰项服从零均值、同方差的正态分布: μ i ∣ X ∼ N ( 0 , σ 2 ) \mu_i|X\sim N(0,\sigma^2) μiXN(0,σ2)

正规方程组:
Cannot read properties of undefined (reading 'type')
估计量的离差形式与样本回归函数的离差形式:
β ^ 1 = ∑ x i y i ∑ x i 2 , β ^ 0 = Y ˉ − β ^ 1 X ˉ ; y ^ i = β ^ 1 x i . \hat\beta_1=\frac{\sum x_iy_i}{\sum x_i^2},\quad \hat\beta_0=\bar{Y}-\hat\beta_1\bar{X};\\ \hat y_i=\hat\beta_1x_i. β^1=xi2xiyi

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值