因果分析系列7--分组和虚拟变量回归

本文探讨了在回归分析中如何处理分组数据,通过使用加权回归给予样本量大、方差小的群体更多权重。同时介绍了虚拟变量回归,用于编码分类变量,展示了虚拟变量在处理效应估计中的作用。通过实例分析,揭示了虚拟变量如何捕捉均值差异,并讨论了交互项如何允许效应随特征水平变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因果分析系列7--分组和虚拟变量回归


在本文中,我们将介绍如何使用线性回归来处理分组数据和虚拟变量回归。这两种技术都是因果推断中非常有用的工具。我们将首先介绍分组数据回归,然后介绍虚拟变量回归。

1. 分组数据回归

并非所有数据点的重要性都是相等的。下面基于ENEM数据集,我们发现大学校的分数比小学校的分数更高。这并不是说大学校更好。这仅仅是因为它们的大样本导致出现较小的方差。
enem数据下载enem_scores.csv

import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值