pandas
LRJ-jonas
药物设计
展开
-
一招获取dataframe表格的“index列表”
import pandas as pd……我这里有一个表格:df_1我想把它的index整理为一个列表,操作如下list = df_1.reset_index()[“index”] 就获取了index的列表。原创 2022-04-18 01:14:58 · 2758 阅读 · 1 评论 -
pandas打开csv表格文件,并指定index,并重新排序
上述代码可以将pandas 指定“”属性“”列为"index"列之后用reindex函数将其变为想要的顺序如果想要取消索引,可以用.reset_index原创 2022-02-27 22:18:37 · 1270 阅读 · 0 评论 -
Pandas对Series的元素进行排序
s = pd.Series([4.5, 2.7, 8.9, -0.4], index = ['d', 'b', 'a', 'c'])s.reindex(['a', 'b', 'c', 'd', 'e']) #是的,哪怕s中没有e这样就能把原本的dbac顺序排列为abcd了原创 2022-02-27 16:30:18 · 900 阅读 · 0 评论 -
loc函数和iloc函数的使用区分
loc函数的用法:输入具体的行/列索引的内容,对其进行操作。iloc函数的用法:输入索引所在的位置编号,对其进行操作。原创 2021-12-16 18:52:34 · 529 阅读 · 1 评论 -
二维表格切取指定的行(pandas、loc函数)
首先,我们拿到一个csv表格 (如果是excel表格也可以另存为csv)如果我们想要得到它的第二行和第三行的数据,就可以直接“切片”,操作如下:注意:a.index函数 得到的并不是列表文件,而是一个range。或者直接用 iloc()、loc()函数:...原创 2021-11-30 00:47:46 · 1002 阅读 · 0 评论 -
python pandas库 —— loc函数的应用
本实例中,首先我们从文献里得到了4000多个蛋白质之间的相似性的矩阵(data.csv),该矩阵为“对称矩阵”(行和列的元素相同)然而我们只想知道其中1000多种蛋白质之间的相似性(data2.csv),于是需要从上述矩阵中筛选具体步骤:首先导入两个csv表格(data、data2) # header、index_col是列标题、行标题#header = 0 代表第一行是列索引,程序会忽略列索引接下来是在data中筛出data2包含的蛋白质。首先将data2的行(100...原创 2021-11-24 01:30:19 · 2623 阅读 · 2 评论