python
LRJ-jonas
药物设计
展开
-
【List】python列表中,append和extend的区别
list中的两种添加元素的方法的区别原创 2023-06-01 01:52:19 · 76 阅读 · 0 评论 -
前向选择的代码实现(Forward Selection)
【代码】前向选择的代码实现(Forward Selection)原创 2023-02-27 22:50:48 · 351 阅读 · 0 评论 -
python的collections库自带的Counter()函数
【代码】python的collections库自带的Counter()函数。原创 2022-09-14 22:13:39 · 357 阅读 · 0 评论 -
python中,import *的意义
from …… import * 的用法原创 2022-07-05 15:45:18 · 7861 阅读 · 0 评论 -
eval函数,全局、本地变量
eval函数的使用原创 2022-06-27 16:10:30 · 362 阅读 · 0 评论 -
python——字典
python字典的操作原创 2022-06-19 23:46:11 · 74 阅读 · 0 评论 -
多线程批量处理数据的运行模板
多线程的使用原创 2022-06-14 00:54:17 · 209 阅读 · 0 评论 -
sklearn超参数调整方法 ——GridSearchCV、
超参数搜索转载 2022-04-29 23:58:44 · 811 阅读 · 0 评论 -
sklearn metrics 的使用方法
二、 scikit-learn.metrics导入与调用有两种方式导入:方式一:from sklearn.metrics import 评价指标函数名称例如:from sklearn.metrics import mean_squared_errorfrom sklearn.metrics import r2_score直接使用函数名调用:mse = mean_squared_error(y_test, y_pre)R2 = r2_score(y_test,y_pre)原创 2022-04-29 00:08:35 · 7524 阅读 · 2 评论 -
Pymol 安装FFMPEG,绘制精美动图
版权声明:WJ原创文章 https://blog.csdn.net/WJ_MeiMei/article/details/84863023已有环境:python3.5、numpyMKL 、scipy、 matplotlib、 scikit-learn、 tqdm、 scikit-image、sk-video步骤1. Anaconada 环境步骤2. 以下两者方法均失败的情况下用步骤3pip install FFmpegconda install FFmpeg步骤...转载 2022-04-27 22:58:31 · 1483 阅读 · 0 评论 -
pandas中min()函数的应用
Pandas dataframe.min()函数返回给定对象中的最小值。如果输入是一个序列,则该方法将返回一个标量,该数量将是该序列中的最小值。如果输入是一个 DataFrame ,则该方法将返回一个在 DataFrame 的指定轴上具有最小值的序列。默认情况下,该轴是索引轴(axis=0)。用法:DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)axis: axis=0代表从上到下的索引轴;原创 2022-04-26 00:24:33 · 3799 阅读 · 0 评论 -
sklearn——主成分分析PCA操作实例
import matplotlib.pyplot as pltfrom sklearn.decomposition import PCAimport numpy as np#随便弄一个四维数组来试验一下DF = np.array([[0,1,4,3], [1,2,8,9], [2,4,16,81], [2,5,20,243], [4,6,24,729]])#样本数不能少于维数#如.原创 2022-04-23 18:01:53 · 2793 阅读 · 0 评论 -
一招获取dataframe表格的“index列表”
import pandas as pd……我这里有一个表格:df_1我想把它的index整理为一个列表,操作如下list = df_1.reset_index()[“index”] 就获取了index的列表。原创 2022-04-18 01:14:58 · 2758 阅读 · 1 评论 -
[Linux]如何进入python / 退出python命令行
首先要确保你的linux系统有python,可以安装anaconda,这样python就顺带着一起被安装了。推荐一个安装anaconda的网址:在Linux中永久设置Anaconda环境变量的方法_Linux教程_Linux公社-Linux系统门户网站在linux系统的终端Terminal中输入python(或者python3)调出你的python想要退出python命令行,输入exit()函数就可以了。如果在安装Anaconda的过程中没有将安装路径添加到系统环境变量中,需要在安装..原创 2022-03-21 13:54:08 · 9611 阅读 · 0 评论 -
固定类似化合物公共结构的取向,方便比较差异
固定公共子结构,更直观地表现类似的化合物原创 2022-03-15 11:11:43 · 702 阅读 · 0 评论 -
用anaconda下载RDkit库,并在python上运行(教你用 anaconda 运行 python)
windows系统下载RDkit可以用anaconda,具体操作如下:conda install -c rdkit rdkit然后就可以在python上运行。(我已经预先创建并激活了“python37”这个环境environment,默认是base,你们也可以创建使用python3.7的环境,方法在文末。)如图,在anaconda的终端输入python,就会转换到python的编译环境。尝试 import rdkit,没有报错~~展示一下我是如何创建并激活python37这个环原创 2022-03-11 10:35:29 · 3520 阅读 · 0 评论 -
批量计算sdf格式分子的五倍率描述符,并生成表格
一个脚本就能批量得到sdf化合物分子文件的五倍率描述符,生成一个excel表格!首先,找个文件夹,将脚本放进文件夹中。然后创建一个名为linpinski_description_task的文件夹,把化合物分子放入linpinski_description_task文件夹中。然后执行脚本就得到csv表格了!(注意sdf的文件不能有中文符号)美中不足的是,当前的版本批量处理得到的描述符文件是这个样子的:每个分子的具体信息上方都会出现列名。要解决这个问题很简单,使用excel的“数据”、“..原创 2022-02-27 23:25:00 · 673 阅读 · 0 评论 -
pandas打开csv表格文件,并指定index,并重新排序
上述代码可以将pandas 指定“”属性“”列为"index"列之后用reindex函数将其变为想要的顺序如果想要取消索引,可以用.reset_index原创 2022-02-27 22:18:37 · 1270 阅读 · 0 评论 -
Pandas对Series的元素进行排序
s = pd.Series([4.5, 2.7, 8.9, -0.4], index = ['d', 'b', 'a', 'c'])s.reindex(['a', 'b', 'c', 'd', 'e']) #是的,哪怕s中没有e这样就能把原本的dbac顺序排列为abcd了原创 2022-02-27 16:30:18 · 900 阅读 · 0 评论 -
机器学习算法数据的准备——数据清理、转换器、流水线
数据清理机器学习算法难以在缺失的特征值上工作,所以我们要创建一些函数处理那些缺失的特征值。1.放弃相应的区域,抛弃缺失数据的样本2.放弃整个特征3.将缺失的值填充为特定的值(平均数、中位数、0)可以使用sklearn中的SimpleImputer填充中位数。如下例,设置超参数strategy="median",然后用drop函数抛去文本类型的特征(这里是"ocean_proximity"),然后用 fit()函数 对数据进行使用。from sklearn.impute import原创 2022-02-24 12:01:56 · 812 阅读 · 0 评论 -
Anaconda下载库(安装包)、创建虚拟环境等
conda install pak # 安装包,pak代表包名,可依次安装多个包或指定版本,包名之间空格分开;conda remove pak # 移除指定包conda update pak # 更新包conda upgrade --all # 更新所以包conda search pak # 搜索包信息conda list / conda list -n python34 # 展示各个包的列表 或 指定环境的包列表某些包不存在,会报错:...原创 2023-01-05 20:26:26 · 2273 阅读 · 0 评论 -
loc函数和iloc函数的使用区分
loc函数的用法:输入具体的行/列索引的内容,对其进行操作。iloc函数的用法:输入索引所在的位置编号,对其进行操作。原创 2021-12-16 18:52:34 · 529 阅读 · 1 评论 -
Python 制作散点图 scatter plot
使用Python 制作散点图原创 2021-12-15 01:08:53 · 3678 阅读 · 0 评论 -
<机器学习实战>第一章的 oecd_bli = oecd_bli[oecd_bli[“INEQUALITY“]==“TOT“ 什么意思?
在《机器学习实战》这本书里第一章有个实例:联合国统计的人均GDP与国民幸福度之间的关系。书中使用matlablib做散点图。大致的代码如下:def prepare_country_stats(oecd_bli, gdp_per_capita): oecd_bli = oecd_bli[oecd_bli["INEQUALITY"]=="TOT"] oecd_bli = oecd_bli.pivot(index="Country", columns="Indicator", values=原创 2021-12-14 22:07:44 · 2348 阅读 · 0 评论 -
二维表格切取指定的行(pandas、loc函数)
首先,我们拿到一个csv表格 (如果是excel表格也可以另存为csv)如果我们想要得到它的第二行和第三行的数据,就可以直接“切片”,操作如下:注意:a.index函数 得到的并不是列表文件,而是一个range。或者直接用 iloc()、loc()函数:...原创 2021-11-30 00:47:46 · 1002 阅读 · 0 评论 -
for in 循环迭代原理与迭代器
迭代是 Python 强大功能之一,是遍历访问集合元素(可迭代对象)的一种方式。。迭代器是一个可以记住遍历的位置的对象。从集合(可迭代对象)的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。在C语言中,要迭代是一件很麻烦的事情,因为迭代的对象不同就会有不同的语法。而在python的 for...in... 循环中,只要对象是可迭代的类型(字符串、列表、元组等),就可以轻松迭代。迭代器必须要有__iter__() 和 __next__() 两种方法。例如:仅原创 2021-11-22 16:06:11 · 1503 阅读 · 0 评论 -
numpy、scipy、pandas的区别
NumPyN维数组容器。是很基础的扩展,其余的扩展都是以此为基础。SciPy科学计算函数库。包括了统计、优化、整合以及线性代数模块、傅里叶变换、信号和图像图例,常微分方差的求解等Pandas表格容器。【Pan(el) + da(ta) + s(eries)】数据结构有一维的Series,二维的DataFrame(类似于Excel或者SQL中的表),三维的Panel。学习Pandas你要掌握的是:1.汇总和计算描述统计,处理缺失数据 ,层次化索引2.清理、转换、合并、重塑、原创 2021-11-16 15:07:52 · 1996 阅读 · 0 评论 -
python “for in”、“while”循环的联合使用及注意事项
当我们想要遍历处理很多数据集的时候,for in循环、while循环就很实用。单独介绍for in循环首先 in 后面应该是可以遍历的数据类型(可枚举),例如列表、字符串、元组、字典、集合。其次,一定不要忘记加冒号!加了冒号以后,回车到下一行,会自动缩进。(python语言很重视缩进,有缩进代表从属上一行)该函数会遍历每一个元素,并且不能被break函数打断。while循环while循环可以设置循环的条件,当达到一定条件时,循环才会停止。num = 1while num原创 2021-11-15 17:47:36 · 1449 阅读 · 0 评论 -
统计csv表格中某一元素的个数(count函数)
我有一个csv表格(data.csv),一共1915列,732行(绝大多数的元素是0,偶尔会有1)。现在我想统计 1 在每一列出现的次数、在整个表中出现的次数。data[data == 1].count()原创 2021-11-14 23:09:24 · 3315 阅读 · 1 评论