sklearn metrics 的使用方法

本文详细介绍了如何在Python中安装和使用scikit-learn库中的各类评估指标,包括精度、AUC、F1分数、Log Loss等,并展示了分类和回归问题的实例。掌握这些指标有助于提升模型性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、安装sklearn

如果安装了Anoconda,可以直接从Anoconda Navigator——Environment里面搜索添加。
pip install -U scikit-learn


二、scikit-learn.metrics导入与调用

有两种方式导入。

方式一:

from sklearn.metrics import 评价指标函数名称

例如:

from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

直接使用函数名调用:

mse = mean_squared_error(y_test, y_pre)
R2 = r2_score(y_test,y_pre)

方式二:

from sklearn import metrics

调用方式为:metrics.评价指标函数名称(parameter)

例如:
计算均方误差mean squared error

计算回归的决定系数R2

mse = metrics.mean_squared_error(y_test, y_pre)
R2 = metrics.r2_score(y_test,y_pre)

【分类指标】

1.accuracy_score(y_true,y_pre) : 精度 

2.auc(xyreorder=False) : ROC曲线下的面积;较大的AUC代表了较好的performance。

3.average_precision_score(y_truey_scoreaverage='macro'sample_weight=None):根据预测得分计算平均精度(AP)

4.brier_score_loss(y_truey_probsample_weight=Nonepos_label=None):The smaller the Brier score, the better.

5.confusion_matrix(y_truey_predlabels=Nonesample_weight=None):通过计算混淆矩阵来评估分类的准确性 返回混淆矩阵

6.f1_score(y_truey_predlabels=Nonepos_label=1average='binary'sample_weight=None): F1值

  F1 = 2 * (precision * recall) / (precision + recall) precision(查准率)=TP/(TP+FP) recall(查全率)=TP/(TP+FN)

7.log_loss(y_truey_predeps=1e-15normalize=Truesample_weight=Nonelabels=None):对数损耗,又称逻辑损耗或交叉熵损耗

8.precision_score(y_truey_predlabels=Nonepos_label=1average='binary',) :查准率或者精度; precision(查准率)=TP/(TP+FP)

9.recall_score(y_truey_predlabels=Nonepos_label=1average='binary'sample_weight=None):查全率 ;recall(查全率)=TP/(TP+FN)

10.roc_auc_score(y_truey_scoreaverage='macro'sample_weight=None):计算ROC曲线下的面积就是AUC的值,the larger the better

11.roc_curve(y_truey_scorepos_label=Nonesample_weight=Nonedrop_intermediate=True);计算ROC曲线的横纵坐标值,TPR,FPR

  TPR = TP/(TP+FN) = recall(真正例率,敏感度)       FPR = FP/(FP+TN)(假正例率,1-特异性)

【回归指标】

1.explained_variance_score(y_truey_predsample_weight=Nonemultioutput='uniform_average'):回归方差(反应自变量与因变量之间的相关程度)

2.mean_absolute_error(y_truey_predsample_weight=Nonemultioutput='uniform_average'):平均绝对误差

3.mean_squared_error(y_truey_predsample_weight=Nonemultioutput='uniform_average'):均方差

4.median_absolute_error(y_truey_pred)   中值绝对误差

5.r2_score(y_truey_predsample_weight=Nonemultioutput='uniform_average')  :R平方值

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LRJ-jonas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值