Pytorch深度学习实践 第九讲 多分类问题

本篇博客介绍了如何使用PyTorch的SoftMax分类器处理多分类问题,讲解了SoftMax函数的原理,并通过MNIST数据集实例展示了训练过程,包括数据预处理、模型设计及损失函数的计算。在训练过程中,随着迭代次数增加,损失逐渐减小,最终在测试集上取得了96%的预测正确率。
摘要由CSDN通过智能技术生成

使用SoftMax分类器进行多分类问题(其输入不需要Relu激活,而是直接连接线性层),经过SoftMax分类器后满足:1.大于等于0,2.所有类别概率和为1.

Softmax函数:

 使用Numpy计算交叉熵损失的过程:(One-hot是一行或一列只有一位是1的矩阵)

 使用Pytorch计算交叉熵损失:(torch.LongTensor([0])对应的one-hot是[1  0  0],即只有索引0对应的位置是1)

 CrossEntropyLoss()就是将softmax-loss-NLLLoss合并成一步。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值