使用SoftMax分类器进行多分类问题(其输入不需要Relu激活,而是直接连接线性层),经过SoftMax分类器后满足:1.大于等于0,2.所有类别概率和为1.
Softmax函数:
使用Numpy计算交叉熵损失的过程:(One-hot是一行或一列只有一位是1的矩阵)
使用Pytorch计算交叉熵损失:(torch.LongTensor([0])对应的one-hot是[1 0 0],即只有索引0对应的位置是1)
CrossEntropyLoss()就是将softmax-loss-NLLLoss合并成一步。<