YOLOv8训练自定义项目

训练内容:基于yolo的筒纱实例分割

数据设置:

1)https://ultralytics.com/assets/coco8-seg.zip,下载coco8-seg.zip,解压,记住各个文件夹内的文件名(12为为长度,如000000000001.jpg,主要是文件名长度,后缀名先不管)。

2)将自己准备的数据,按照coco8-seg下各个文件夹的文件命名规则重命名,然后复制到各个文件夹内即可。

3)数据配置文件coco-seg.yml的编写,如下:

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /root/autodl-tmp/yolo/datasets/coco8-seg  # dataset root dir
train: images/train  # train images (relative to 'path') 4 images
val: images/val  # val images (relative to 'path') 4 images
test:  # test images (optional)

# Classes (80 COCO classes)
names:
  0: thread
  1: bicycle

注意:①path 项的路径指向的是coco8-seg,路径没有要自己创建。②coco-seg.yml这个文件放置比较灵活,比如放在与datasets同级目录下。

训练:

在datasets所在同级目录下创建train.py,写入:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-seg.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="/root/autodl-tmp/yolo/coco8-seg.yml", epochs=100, imgsz=(480, 640))

保存。

然后,命令行输入 python train.py,即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值