Inverse Fourier transform

Definition
F ( ω ) = ∫ − ∞ ∞ f ( t ) e x p ( − j ω t ) d t F(\omega)=\int ^{\infty} _{-\infty}f(t)exp(-j\omega t)dt F(ω)=f(t)exp(jωt)dt
Inverse Fourier transform
f ( t ) = F − 1 ( F ( ω ) ) = 1 2 π ∫ − ∞ ∞ f ( ω ) e x p ( j ω t ) d ω f(t)=\mathcal F ^{-1}( F(\omega))=\frac {1}{2\pi}\int ^{\infty} _{-\infty}f(\omega)exp(j\omega t)d\omega f(t)=F1(F(ω))=2π1f(ω)exp(jωt)dω
Proof
F ( ω ) = ∫ − ∞ ∞ f ( t ) e x p ( − j ω t ) d t F(\omega)=\int ^{\infty} _{-\infty}f(t)exp(-j\omega t)dt F(ω)=f(t)exp(jωt)dt
F ( ω ) = ∫ − ∞ ∞ 1 2 π ∫ − ∞ ∞ f ( ω ′ ) e x p ( j ω ′ t ) d ω ′ e x p ( − j ω t ) d t F(\omega)=\int ^{\infty} _{-\infty}\frac {1}{2\pi}\int ^{\infty} _{-\infty}f(\omega ^{\prime})exp(j\omega ^{\prime} t) d\omega ^{\prime} exp(-j\omega t)dt F(ω)=2π1f(ω)exp(jωt)dωexp(jωt)dt
= 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( ω ′ ) e x p ( j ω ′ t ) d ω ′ e x p ( − j ω t ) d t =\frac {1}{2\pi}\int ^{\infty} _{-\infty}\int ^{\infty} _{-\infty}f(\omega ^{\prime})exp(j\omega ^{\prime} t) d\omega ^{\prime} exp(-j\omega t)dt =2π1f(ω)exp(jωt)dωexp(jωt)dt
= 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( ω ′ ) e x p ( − j ( ω ′ − ω ) t ) d ω ′ d t =\frac {1}{2\pi}\int ^{\infty} _{-\infty}\int ^{\infty} _{-\infty}f(\omega ^{\prime}) exp(-j(\omega ^{\prime}-\omega) t) d\omega ^{\prime} dt =2π1f(ω)exp(j(ωω)t)dωdt
= 1 2 π ∫ − ∞ ∞ f ( ω ′ ) [ ∫ − ∞ ∞ e x p ( − j ( ω ′ − ω ) t ) d t ] d ω ′ =\frac {1}{2\pi}\int ^{\infty} _{-\infty} f(\omega ^{\prime}) \left[ \int ^{\infty} _{-\infty} exp(-j(\omega ^{\prime}-\omega) t) dt \right] d\omega ^{\prime} =2π1f(ω)[exp(j(ωω)t)dt]dω
Let
δ ( ω − ω ′ ) = 1 2 π ∫ − ∞ ∞ e x p ( − j ( ω ′ − ω ) t ) d t \delta (\omega - \omega ^{\prime} )= \frac {1}{2\pi} \int ^{\infty} _{-\infty} exp(-j(\omega ^{\prime}-\omega) t) dt δ(ωω)=2π1exp(j(ωω)t)dt
F ( ω ) = ∫ − ∞ ∞ f ( ω ′ ) δ ( ω − ω ′ ) d ω ′ F(\omega)=\int ^{\infty} _{-\infty} f(\omega ^{\prime}) \delta (\omega - \omega ^{\prime} ) d\omega ^{\prime} F(ω)=f(ω)δ(ωω)dω
For δ \delta δ function
∫ − ∞ ∞ δ ( x ) d x = 1 , δ ( x ) = 0 , f o r x ≠ 0 \int ^{\infty} _{-\infty}\delta (x)dx=1 , \delta (x)=0, \quad for \quad x \neq 0 δ(x)dx=1,δ(x)=0,forx=0
∫ − ∞ ∞ f ( x ) δ ( x − a ) d x = f ( a ) \int ^{\infty} _{-\infty} f(x) \delta (x-a)dx=f(a) f(x)δ(xa)dx=f(a)
1 2 π ∫ − ∞ ∞ e − j ω x d x = δ ( ω ) \frac{1}{2\pi}\int ^{\infty} _{-\infty} e^{-j\omega x}dx=\delta (\omega) 2π1ejωxdx=δ(ω)

Therefore,

∫ − ∞ ∞ f ( ω ′ ) δ ( ω − ω ′ ) d ω ′ = F ( ω ) \int ^{\infty} _{-\infty} f(\omega ^{\prime}) \delta (\omega - \omega ^{\prime} ) d\omega ^{\prime}=F(\omega) f(ω)δ(ωω)dω=F(ω)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值