自动驾驶控制模块——车辆运动学

本文详细介绍了自动驾驶汽车的运动控制模块,基于车辆在水平面上的运动模型,探讨了如何通过数学公式描述汽车运动。文章重点讲解了模型建立过程中的假设、两轮模型的变量说明以及不同情况下的运动总方程,特别是对于低速时的简略版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自动驾驶控制模块——车辆运动学

参考资料来源:B站老王、《自动驾驶汽车决策与控制》一书

:大家学习过程中可以自己手推一遍,理解更加深刻,也可以配合老王大佬视频食用

1 模型假设

汽车运动模型是指用数学公式描述汽车运动而不考虑影响汽车运动的力。运动方程基于控制对象的几何关系而建立的。建立汽车的运动模型需要以下假设作为前提:

  • 不考虑汽车在Z轴方向的运动,只考虑XY水平面的运动
  • 左右侧车轮转角一致,这样可将左右侧轮胎合并为一个轮胎
  • 汽车行驶速度变化缓慢,忽略前后轴载荷的转移
  • 车身及悬架系统是刚性

2 模型建立

汽车可以简化为两轮模型,如下图所示。
汽车运动学模型

变量说明:

  • A点:车的前轮
  • B点:车的后轮
  • δ f \delta_{f} δf:前轮转角(与车辆坐标系)
  • δ r \delta_{r} δr:后轮转角
  • C点:汽车质心
  • l f l_{f} lf:质点C到A点的距离
  • l r l_{r} lr:质点C到B点的距离
  • L = l f + l r L = l_{f}+l_{r} L=lf+lr:汽车的轴距
  • V:汽车质心点的速度
  • β \beta β:侧偏角
  • ψ \psi ψ:横摆角
  • R:汽车行驶轨迹的半径

3 运动总方程推导

Δ O C A \Delta OCA ΔOCA上用正弦定理,有

s i n ( δ f − β ) l f = s i n ( π 2 − δ f ) R \frac{sin(\delta_{f}-\beta)}{l_{f}} = \frac{sin(\frac{\pi}{2} -\delta_{f})}{R}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值