定积分实际计算

定积分应用复习笔记,仅为笔者拙见,如有错误,望各位读者不啬笔墨指正,感激不尽!


定积分的应用实际上笔者理解为微元法解决实际问题

一、平面图形的面积

求两曲线相交部分面积

实际上就是两直线的距离沿着x轴正方向由定义域两端a到b扫一段积出来的面积

  • 直角坐标系: ∫ a b ∣ f 1 ( x ) − f 2 ( x ) ∣   d x \int_a^b|f_1(x)-f_2(x)|\ \mathrm{d}x abf1(x)f2(x) dx
  • 极坐标系: 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 ( θ ) ∣   d θ \frac12\int_\alpha^\beta|r_1^2(\theta)-r_2^2(\theta)|\ \mathrm{d}\theta 21αβr12(θ)r22(θ) dθ
  • 参数方程表示:一般多为求与坐标轴和直线围城的面积 ∫ a b y ( t ) x ′ ( t )   d t \int_a^by(t)x'(t)\ \mathrm{d}t aby(t)x(t) dt

二、由平行截面面积求体积

求空间中物体体积

实际上,由类似的微元思想,我们只需要找到其平行截面的表达式,再沿着定义域范围a到b积一段就是其体积,由这个思路,那我们能够很好的理解祖暅原理“幂势既同,其积不容异”,就是说,若两物体的平行截面面积各处相等,且定义域的长度也相等,那么两物体的体积不可能不相等

通常上面的想法,我们能够得到一下结论

  • 由截面面积函数求立体体积 ∫ a b A ( x )   d x \int_a^bA(x)\ \mathrm{d}x abA(x) dx,其中 A ( x ) A(x) A(x)为截面面积函数, A ( x ) A(x) A(x) [ a , b ] [a,b] [a,b]上的连续函数
  • 旋转体体积(设 f f f [ a , b ] [a,b] [a,b]上的连续函数)
    • 绕x轴旋转: V = π ∫ a b [ f ( x ) ] 2   d x V=\pi\int_a^b[f(x)]^2\ \mathrm{d}x V=πab[f(x)]2 dx
    • 绕y轴旋转: V = 2 π ∫ a b x f ( x )   d x V=2\pi\int_a^bxf(x)\ \mathrm{d}x V=2πabxf(x) dx

三、平面曲线的弧长与曲率

此处对计算要求更高,定义从略,笔者简单叙述

1. 弧长

C = A B ⌢ C=\overset{\frown}{AB} C=AB是一条没有自交点非闭的平面曲线,取分割 A = P 0 , P 1 , P 2 , ⋯   , P n = B A=P_0,P_1,P_2,\cdots,P_n=B A=P0,P1,P2,,Pn=B,连接分割中相邻两点得到n条弦 P i − 1 P i ‾ \overline{P_{i-1}P_i} Pi1Pi,那么这n条线构成 C C C的内折线

此时记 ∣ ∣ T ∣ ∣ = m a x 1 ≤ i ≤ m ∣ P i − 1 P i ∣ ||T||=\mathop{max}\limits_{1\le i\le m}|P_{i-1}P_i| ∣∣T∣∣=1immaxPi1Pi s T = ∑ i = 1 m ∣ P i − 1 P i ‾ ∣ s_T=\sum_{i=1}^m|\overline{P_{i-1}P_i}| sT=i=1mPi1Pi,若 lim ⁡ ∣ ∣ T ∣ ∣ → 0 s T = s \lim\limits_{||T||\to0}s_T=s ∣∣T∣∣0limsT=s,那么 C C C可求长,极限 s s s定义为曲线 C C C的弧长

弧长是具有可拆分和求和性质的,若弧长由参方给出,且 x ( t ) x(t) x(t) y ( t ) y(t) y(t) [ α , β ] [\alpha,\beta] [α,β]上连续可微,若 x ′ 2 ( t ) + y ′ 2 ( t ) ≠ 0 {x'}^2(t)+{y'}^2(t)\neq0 x2(t)+y2(t)=0,那么成曲线 C C C光滑的


弧长的一些计算公式:

  • 直角坐标: f f f [ a , b ] [a,b] [a,b]上连续可微,此时曲线光滑, s = ∫ a b 1 + f ′ 2 ( x )   d x s=\int_a^b\sqrt{1+{f'}^2(x)}\ \mathrm{d}x s=ab1+f2(x)  dx
  • 极坐标: r ′ ( θ ) r'(\theta) r(θ) [ α , β ] [\alpha,\beta] [α,β]上连续且 r ( θ ) r(\theta) r(θ) r ′ ( θ ) r'(\theta) r(θ)不同时为0,那么 s = ∫ α β r 2 ( θ ) + r ′ 2 ( θ )   d θ s=\int_\alpha^\beta\sqrt{r^2(\theta)+{r'}^2(\theta)}\ \mathrm{d}\theta s=αβr2(θ)+r2(θ)  dθ
  • 参数方程: x ′ ( t ) x'(t) x(t) y ′ ( t ) y'(t) y(t) [ a , b ] [a,b] [a,b]上连续可微, C C C可求长, s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2   d t s=\int_\alpha^\beta\sqrt{[x'(t)]^2+[y'(t)]^2}\ \mathrm{d}t s=αβ[x(t)]2+[y(t)]2  dt

弧微分 d s = ( d x ) 2 + ( d y ) 2 \mathrm{d}s=\sqrt{(\mathrm{d}x)^2+(\mathrm{d}y)^2} ds=(dx)2+(dy)2


2. 曲率

曲率是描述曲线局部性态的重要标志,曲率表示动点 P P P运动到 Q Q Q的倾斜角变化量与弧长的比值

平均曲率 K ‾ = ∣ Δ α Δ s ∣ \overline K=|\frac{\Delta\alpha}{\Delta s}| K=ΔsΔα,极限情况下: K = ∣ lim ⁡ Δ t → 0 Δ α Δ s ∣ = ∣ d α d s ∣ K=|\lim\limits_{\Delta t\to 0}\frac{\Delta \alpha}{\Delta s}|=|\frac{\mathrm{d}\alpha}{\mathrm{d}s}| K=Δt0limΔsΔα=dsdα

由此导出曲率的计算公式 K = ∣ x ′ y ′ ′ − x ′ ′ y ′ ∣ ( x ′ 2 + y ′ 2 ) 3 2 K=\frac{|x'y''-x''y'|}{({x'}^2+{y'}^2)^{\frac32}} K=(x2+y2)23xy′′x′′y,直角坐标系下 K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K=\frac{|y''|}{(1+y'^2)^{\frac32}} K=(1+y′2)23y′′


曲率圆

设曲线 C C C上在其一点 P P P处的曲线 K ≠ 0 K\neq0 K=0,过点 P P P作一个半径为 ρ = 1 K \rho=\frac1K ρ=K1的圆,使其在 P P P处的切线与 C C C相同,并在点 P P P的附近与曲线位于切线的同侧。由曲率圆的定义,曲线在 P P P处与曲率圆有相同的切线、曲率和凸性

四、旋转曲面的面积

先给出计算公式

  • 直角坐标: S = 2 π ∫ a b f ( x ) 1 + f ′ 2 ( x )   d x S=2\pi\int_a^bf(x)\sqrt{1+f'^2(x)}\ \mathrm{d}x S=2πabf(x)1+f′2(x)  dx
  • 极坐标: S = 2 π ∫ α β ρ ( θ ) sin ⁡ θ ρ ′ 2 ( θ ) + ρ 2 ( θ )   d ρ S=2\pi\int_\alpha^\beta\rho(\theta)\sin\theta\sqrt{\rho'^2(\theta)+\rho^2(\theta)}\ \mathrm{d}\rho S=2παβρ(θ)sinθρ′2(θ)+ρ2(θ)  dρ
  • 参数方程: S = 2 π ∫ α β y ( t ) x ′ 2 ( t ) + y ′ 2 ( t )   d t S=2\pi\int_\alpha^\beta y(t)\sqrt{x'^2(t)+y'^2(t)}\ \mathrm{d}t S=2παβy(t)x′2(t)+y′2(t)  dt

关于取微元误差的一些讨论

首先微元法的几点要求

  1. 所求量 Φ \Phi Φ 关于分布区间必须是代数可加的
  2. 微元法的关键是给出 Δ Φ \Delta\Phi ΔΦ 的近似可求量 Δ ′ Φ \Delta'\Phi ΔΦ.一般来说,近似可求量要严格根据定义选取,不同的选取是可以的,但是可能由于误差精度问题带来完全错误的答案
  3. Δ ′ Φ \Delta'\Phi ΔΦ用线性形式 f ( x ) Δ x f(x)\Delta x f(x)Δx代替时,要严格检验 Δ ′ Φ − f ( x ) Δ x \Delta'\Phi-f(x)\Delta x ΔΦf(x)Δx 是否为 Δ x \Delta x Δx的高阶无穷小量,以保证其对应的积分和极限是对应的

五、定积分在物理中的应用

定积分在物理中的应用主要还是根据微元法,结合物理公式进行计算,这里总结起来需要很多物理背景知识,且类别较多,因而此处给出两大块内容的典型习题供参考


1. 引力问题

一根长为 l l l的均匀细杆,质量为 M M M,在其中垂线上相距细杆为 a a a处有一质量为 m m m的质点,试求细杆对质点的万有引力

解:
容易知道,在 Δ x \Delta x Δx段,将杆看作质点,其质量为 d M = M l d x \mathrm{d}M=\frac Ml\mathrm{d}x dM=lMdx

所以他对质点m的引力为 d F = k m d M r 2 = k m a 2 + x 2 ⋅ M l d x \mathrm{d}F=\frac{km\mathrm{d}M}{r^2}=\frac{km}{a^2+x^2}\cdot\frac Ml\mathrm{d}x dF=r2kmdM=a2+x2kmlMdx

显然水平方向合力为0,那么求竖直方向上
F y = ∫ − l / 2 l / 2 d F y = − 2 ∫ 0 l / 2 k m M a l ( a 2 + x 2 ) − 3 2 d x = − 2 k m M a 4 a 2 + l 2 F_y=\int_{-l/2}^{l/2}dF_y=-2\int_0^{l/2}\frac{kmMa}{l}(a^2+x^2)^{-\frac32}\mathrm{d}x=-\frac{2kmM}{a\sqrt{4a^2+l^2}} Fy=l/2l/2dFy=20l/2lkmMa(a2+x2)23dx=a4a2+l2 2kmM


2. 做功问题

一圆锥形水池,池口直径30m,深20m,池中盛满水,试求将池水全部抽出池外所做的功

解:
以圆锥底圆圆心为原点,圆锥高为正方向构建直角坐标系

深度为 Δ x \Delta x Δx的体积为 d V = π [ 15 ( 1 − x 20 ) ] 2 d x \mathrm{d}V=\pi[15(1-\frac x{20})]^2\mathrm{d}x dV=π[15(120x)]2dx

所以所做的功为 d W = π ρ g x [ 15 ( 1 − x 20 ) 2 ] d x \mathrm{d}W=\pi\rho gx[15(1-\frac x{20})^2]\mathrm{d}x dW=πρgx[15(120x)2]dx

从而将全部池水抽出池外做的功为 W = 225 π ρ g ∫ 0 20 x ( 1 − x 20 ) 2 d x = 7500 π ρ g W=225\pi\rho g\int_0^{20}x(1-\frac x{20})^2\mathrm{d}x=7500\pi\rho g W=225πρg020x(120x)2dx=7500πρg

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值