微分方程复习

此为笔者复习课本微分方程相关章节笔记,如有错误,望各位读者不惜笔墨不啬赐教,鄙人将不胜感激!


一、一阶微分方程

  1. 可分离变量的方程: y ′ = f ( x ) ⋅ g ( x ) y'=f(x)\cdot g(x) y=f(x)g(x) ,分离变量后两边同时做积分
  2. 齐次方程 : d y d x = ϕ ( y x ) \frac{\mathrm{d}y}{\mathrm{d}x}=\phi(\frac yx) dxdy=ϕ(xy) ,记 μ = y x \mu=\frac yx μ=xy 即解
  3. 线性方程: y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x) ,通解公式: y = e − ∫ p   d x [ ∫ Q e ∫ p   d x   d x + C ] y=e^{-\int p \ \mathrm{d}x}[\int Qe^{\int p \ \mathrm{d}x}\ \mathrm{d}x+C] y=ep dx[Qep dx dx+C]
  4. 伯努利方程: y ′ + P ( x ) y = Q ( x ) y α   ( α ≠ 1 ) y'+P(x)y=Q(x)y^\alpha\ (\alpha\neq 1) y+P(x)y=Q(x)yα (α=1) ,两边同除 y α y^\alpha yα 并令 μ = y 1 − α \mu=y^{1-\alpha} μ=y1α 即可求解
  5. 全微分方程: d F = P ( x , y ) d x + Q ( x , y ) d y = 0 \mathrm{d}F=P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=0 dF=P(x,y)dx+Q(x,y)dy=0
    1. 判定 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ
    2. 解法:
      1. 偏积分
      2. 凑微分
      3. 线积分

二、可降阶方程

  1. y ′ ′ = f ( x ) y''=f(x) y′′=f(x) :直接积分即降阶
  2. (不显含y的微分方程) y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y) :记 p = y ′ p=y' p=y 即可做
  3. (不显含x的微分方程) y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y) :记 p = y ′ , y ′ ′ = P d P d y p=y',y''=P\frac{\mathrm{d}P}{\mathrm{d}y} p=y,y′′=PdydP

! 方法不是死的注意灵活运用


三、高阶线性微分方程

1. 线性微分方程的结构

齐次方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 非齐次方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) \begin{aligned} 齐次方程\quad &y''+p(x)y'+q(x)y=0 \\ 非齐次方程\quad &y''+p(x)y'+q(x)y=f(x) \end{aligned} 齐次方程非齐次方程y′′+p(x)y+q(x)y=0y′′+p(x)y+q(x)y=f(x)

  • 定理一: y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x) 是齐次方程(1)的两个线性无关特解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x) 是方程(1)的通解

  • 定理二:若 y ∗ y^* y 是非齐次方程(2)的特解, y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x) 是方程(1)的两个线性无关的特解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + y ∗ ( x ) y=C_1y_1(x)+C_2y_2(x)+y^*(x) y=C1y1(x)+C2y2(x)+y(x) 是非齐次微分方程(2)的通解

  • 定理三:若 y 1 ∗ ( x ) y_1^*(x) y1(x) y 2 ∗ ( x ) y_2^*(x) y2(x) 是非齐次方程(2)的两个特解,那么 y ( x ) = y 2 ∗ ( x ) − y 1 ∗ ( x ) y(x)=y_2^*(x)-y_1^*(x) y(x)=y2(x)y1(x) 是齐次方程(1)的解

  • 定理四:若 y 1 ∗ ( x ) y_1^*(x) y1(x) y 2 ∗ ( x ) y_2^*(x) y2(x) 分别是方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) y''+p(x)y'+q(x)y=f_1(x) y′′+p(x)y+q(x)y=f1(x) 和方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 2 ( x ) y''+p(x)y'+q(x)y=f_2(x) y′′+p(x)y+q(x)y=f2(x) 的特解,那么 y 1 ∗ ( x ) + y 2 ∗ ( x ) y_1^*(x)+y_2^*(x) y1(x)+y2(x) 是方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) + f 2 ( x ) y''+p(x)y'+q(x)y=f_1(x)+f_2(x) y′′+p(x)y+q(x)y=f1(x)+f2(x) 的一个特解

2. 常系数齐次线性微分方程

y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py+qy=0

=》特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0

r 1 , r 2 r_1,r_2 r1,r2 是特征方程两个根

  1. 不等实根 r 1 ≠ r 2 r_1\neq r_2 r1=r2 => y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
  2. 相等实根 r 1 = r 2 r_1=r_2 r1=r2 => y = e r x ( C 1 + C 2 x ) y=e^{rx}(C_1+C_2x) y=erx(C1+C2x)
  3. 共轭复根 r 1 , 2 = α ± i β r_{1,2}=\alpha\pm i\beta r1,2=α±iβ => y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}(C_1\cos \beta x+C_2\sin \beta x) y=eαx(C1cosβx+C2sinβx)

3. 常系数线性非齐次微分方程

y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y''+p(x)y'+q(x)y=f(x) y′′+p(x)y+q(x)y=f(x)

?特解怎么找

  1. f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x) ,令 y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_m(x)e^{\lambda x} y=xkQm(x)eλx ( λ \lambda λ 是对应齐次的特征方程的几重根,那么k就取几)
  2. f ( x ) = e α x [ P l ( 1 ) ( x ) cos ⁡ β x + P n ( 2 ) ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}[P_l^{(1)}(x)\cos \beta x+P_n^{(2)}(x)\sin\beta x] f(x)=eαx[Pl(1)(x)cosβx+Pn(2)(x)sinβx] ,令 y ∗ = x k e α x [ R m ( 1 ) ( x ) cos ⁡ β x + R m ( 2 ) ( x ) sin ⁡ β x ] y^*=x^ke^{\alpha x}[R_m^{(1)}(x)\cos \beta x+R_m^{(2)}(x)\sin\beta x] y=xkeαx[Rm(1)(x)cosβx+Rm(2)(x)sinβx] ,其中 m = max ⁡ { l , n } m=\max \{l,n\} m=max{l,n} ( α ± β i \alpha\pm\beta i α±βi 是对应齐次的特征方程的几重根,k就取几)

4. 欧拉方程

形如 x n y ( n ) + a 1 x n − 1 y ( n − 1 ) + ⋯ + a n y = f ( x ) x^ny^{(n)}+a_1x^{n-1}y^{(n-1)}+\cdots+a_ny=f(x) xny(n)+a1xn1y(n1)++any=f(x) 的方程称为欧拉方程

如何求解?

x = e t x=e^t x=et 转化成线性常系数微分方程

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值