ROS实现过程

  1. 首先要新建工作空间;

  1. 在工作空间下新建功能包src并初始化;

在工作空间目录下打开终端输入
catkin_make
  1. 进入src创建ROS包并添加依赖

cd src
catkin_create_pkg 自定义功能包 roscpp rospy std_msgs
  1. 在自定义的功能包的src下新建源文件.cpp

  1. 编辑功能包下的Cmakelists.txt内容

  1. 在工作空间目录下编译

catkin_make
  1. 在工作空间目录下source环境变量

注意该种方法只适合当前窗口,新开窗口调用命令就无效了。

source ./devel/setup.bash
  1. 运行

rosrun 功能包  编译的可执行文件(在Cmakelist.txt中的add_executable)

注意

(1)针对以上的第7步我们可以采用将当前工作空间的变量加入到./bashrc文件下;

gedit ~/.bashrc
在该文件最下面添加:
source ~/工作空间/devel/setup.bash
source ~/.bashrc

欧几里得聚类是一种基于欧几里得距离度量的聚类算法。该算法通过计算样本点之间的欧几里得距离来度量相似性,然后将相似性高的样本归为同一簇。欧几里得聚类具有较好的可解释性和易于实现性,因此被广泛应用于许多领域。 在ROS机器人操作系统)中实现欧几里得聚类是非常容易的。ROS提供了各种强大的机器人操作函数和库,可以大大简化机器人应用程序的开发。为了实现欧几里得聚类算法,需要使用ROS机器人操作函数和库来完成机器人的相关操作。 首先,需要定义一个基于ROS的节点,用于接收和发布数据。节点可以通过ROS中的rospy库来实现。接着,需要定义消息类型和发布者/订阅者,以实现机器人和环境之间的数据传输。在此过程中,数据可以通过ROS数据可视化工具(如RViz)进行显示,以直观地观察机器人和环境之间的交互。 随着数据的接收和传输,可以计算数据的欧几里得距离,并确定相似性高的样本点。在此基础上,可以将样本点分为不同的簇并发布到节点中。最后,可以使用ROS机器人操作函数和库来控制机器人的移动,以实现响应式控制和优化的聚类结果。 总之,通过使用ROS实现欧几里得聚类算法,可以轻松地将机器人应用于各种应用场景,实现聚类分析和优化控制。同时,其易于实现和高可解释性的特点,使其在机器人工程领域具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值