关于卷积神经网络的步幅(stride)

本文解释了步幅在卷积神经网络中的作用,讨论了如何计算步幅对输出尺寸的影响,以及如何在PyTorch的nn.Conv2d中设置步幅参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

认识步幅(stride)

        卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。

计算步幅 

        假设输入的形状n∗n,卷积核的形状为f∗f,填充大小为p,步幅大小为s,输出的高和宽均为((n+2p−f)/s)​+1。 这里可以看到,当参数选择的不恰当时,会造成输出形状计算得出不是整数,所以这里的参数选择需要比较小心。

如何调用Pytorch中的步幅

        nn.Conv2d()中的参数stride就表示滑动的步幅,默认情况下stride=1,常用的有stride=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值