GPT-4o与DeepSeek-V3谁更强?

最新的GPT-4o模型由OpenAI提供,支持128KToken的上下文窗口,并能够支持每次请求生成高达16.4KToken。该模型于2024年8月6日发布,知识截止日期为2023年10月。模型可通过OpenAI的API使用,并且能够经验性地每秒生成77.4个Token。输入成本为每百万Token2.50美元,输出成本为每百万Token10美元。

DeepSeek-V3是一个开源的671B参数混合专家(MoE)模型,每个Token激活37B参数。它具有创新的负载均衡和多Token预测功能,经过14.8TToken的训练。该模型在保持高效的训练成本(仅2.788M H800 GPU小时)的同时,在基准测试中实现了最先进的性能。它整合了从DeepSeek-R1中提取的推理能力,并支持128K上下文窗口。

一、模型概览

在这里插入图片描述

DeepSeek-V3比GPT-4o新4个月。与GPT-4o不同,DeepSeek-V3不支持图像处理。

二、定价对比

比较GPT-4o和DeepSeek-V3之间输入和输出Token的成本。

在这里插入图片描述

DeepSeek-V3在输入和输出Token方面大约比GPT-4o便宜29.8倍。

三、价格对比

与其他模型的成本对比(每百万Token)

输入Token成本

在这里插入图片描述

输出Token成本

在这里插入图片描述

模型性能

基准测试对比

比较GPT-4o和DeepSeek-V3之间的性能指标。看看每个模型在衡量推理、知识和能力的关键基准测试上的表现如何。

在这里插入图片描述


四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

### DeepSeekGPT的区别 #### 技术架构差异 DeepSeek GPT 的技术实现存在显著不同。GPT 基于自回归变换器模型,采用单向注意力机制处理输入序列[^1]。相比之下,虽然具体的内部结构未完全公开,但从影响来看,DeepSeek 可能采用了为优化的架构设计,在开源AI社区产生了深远的影响,推动了创新发展[^2]。 #### 开源程度对比 值得注意的是,GPT系列模型由OpenAI开发并维护,尽管有部分预训练权重被共享给研究界,但整体上仍属于闭源项目。而DeepSeek则明显倾向于开放合作模式,积极促进了开源生态系统的繁荣发展。 #### 应用场景适配性 对于特定应用场景的支持方面也存在一定区别。例如,在某些情况下,经过适当调整后的DeepSeek或许能够好地适应企业级应用需求;而在自然语言理解任务中,GPT凭借其大的泛化能力依然占据优势地位。 ```python # 这里提供了一个简单的伪代码比较两个框架的核心功能 def compare_deepseek_vs_gpt(deepseek_model, gpt_model): # 加载不同的模型配置文件 deepseek_config = load_configuration('deepseek') gpt_config = load_configuration('gpt') # 初始化各自模型实例 ds_instance = initialize_model(deepseek_model, deepseek_config) gpt_instance = initialize_model(gpt_model, gpt_config) # 执行性能评估 evaluate_performance(ds_instance, "DeepSeek") evaluate_performance(gpt_instance, "GPT") return get_comparison_results() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值