HGSR:Hyperbolic Graph Learning for SocialRecommendation

论文提出了一种基于超螺旋图学习的社交推荐模型(HGSR),通过预训练社交嵌入和异构图学习,有效处理社交推荐中的异质性和社交扩散噪声。实验证明了模型在多个数据集上的高性能和普适性。
摘要由CSDN通过智能技术生成

一、概述

该论文提出了一种基于超螺旋图学习的社交推荐模型,旨在解决社交推荐中的异质性和社交扩散噪声等挑战。

传统的社交推荐方法通过建模用户-用户社交网络和用户-物品交互图来提升推荐性能。然而,现有方法将用户和物品嵌入到欧几里得空间中,无法很好地表示图的幂律分布特性,从而导致图基础的社交推荐结果不理想。为了解决这一问题,近年来的研究开始将图嵌入学习应用于超螺旋空间,以保留真实世界图的层次结构。

然而,直接将当前的超螺旋图嵌入模型应用于社交推荐存在两个挑战:网络异质性和社交扩散噪声。首先,由于社交网络和用户-物品交互之间存在语义差异,如何在超螺旋形式下解决社交推荐的异质性问题?其次,显式建模社交扩散容易为用户偏好学习引入噪声,尤其是对于那些具有大量交互的活跃用户。

为了解决上述挑战,该论文提出了一种基于超螺旋图学习的社交推荐模型(HGSR)。首先,通过超螺旋社交嵌入预训练,利用社交结构来保留社交网络的层次性质。其次,构建基于用户-物品交互和社交网络的异质图,并将预训练的社交嵌入作为用户偏好学习的附加特征输入。通过显式的异质图学习和隐式的特征增强,有效解决了超螺旋社交推荐中的异质性和社交噪声问题。论文在四个数据集上进行了实证研究,广泛的实验结果表明,与现有的基准模型相比,所提出的模型具有显著的改进。

总的来说,该论文提出了一种在超螺旋空间学习的社交推荐模型,通过保留图的层次结构特性,有效地解决了社交推荐中的异质性和社交噪声问题,实验结果表明该模型在不同数据集上具有高性能和普适性。

二、主要贡献

本文的主要贡献可以总结如下:

  • 在超螺旋几何的框架下对社交推荐任务进行了建模,并提出了一种新颖的基于超螺旋图学习的社交推荐模型(HGSR)。
  • 设计了一个超螺旋社交预训练模块,用于保留社交结构作为特征,并通过显式的异质图学习和隐式的特征增强来解决社交推荐中的异质性和社交噪声问题。
  • 在四个真实世界数据集上进行的广泛实验结果清楚地证明了所提出的HGSR模型的有效性,包括高性能、预训练特征的泛化性以及对各种稀疏用户的适用性。

三、架构说明

在该论文中,提出了一种名为HGSR的超螺旋社交推荐模型。模型结合了隐式建模和显式建模的方法,旨在解决社交推荐中的问题。具体而言,模型首先使用超螺旋图神经网络对用户-用户社交矩阵进行预训练,生成社交嵌入。这些预训练的社交嵌入可以作为附加特征用于增强推荐模型。然后,模型将用户-用户社交矩阵和用户-物品交互矩阵组合成一个异质图,在超螺旋异质图学习的框架下建模兴趣传播和社交影响扩散过程。

论文指出,单独的隐式建模或显式建模对于社交推荐效果不理想。隐式建模提取了通用的社交特征,但无法捕捉隐藏的推荐模式。显式建模虽然可以缓解交互稀疏问题,但对于活跃用户的偏好学习可能会产生干扰。因此,HGSR模型综合了隐式和显式建模的优势。

总体而言,HGSR模型利用超螺旋空间的特性,在社交推荐中取得了较好的性能,并提供了一种有效的方法来解决社交推荐中的异质性和社交噪声问题。

四、洛伦兹公式来学习双曲嵌入

在选择学习超螺旋嵌入时,我们采用了洛伦兹公式,因其具有高效性和稳定性。洛伦兹公式基于洛伦兹变换和洛伦兹内积,用于描述超螺旋空间的定义和性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值