一、本文概述
《Disentangled Contrastive Learning for Social Recommendation》是一篇关于社交推荐领域的论文。该论文提出了一种新颖的解耦对比学习框架,用于改进社交推荐任务中的表示学习。传统的社交推荐模型通常将用户在协同领域(用户-物品交互)和社交领域(社交关系)中的表示进行统一处理,但这种方法可能无法准确建模用户在两个领域中的异质行为模式,从而降低了用户表示的表达能力。
为了解决这个问题,该论文提出了一种解耦对比学习框架,用于改进社交推荐任务中的用户表示学习。通过将用户行为解耦为协同领域和社交领域两个子领域,并通过解耦对比学习进行知识传递,该模型能够更好地建模用户在社交推荐中的异质行为模式,提高表示学习的表达能力。实验证明了该模型的优越性,展示了其在社交推荐领域的潜力。
二、社交推荐中的问题和挑战以及DcRec的主要思想和贡献
1、问题和挑战
在社交推荐中,用户在协同领域和社交领域具有不同的行为模式,但传统方法采用统一的用户表示,无法很好地捕捉到这种异质性。
为了解决这个问题,并且受到SSL在知识转移方面的优势启发,DcRec引入了领域解耦,将用户行为分为协同领域和社交领域,并提出了解耦的对比学习目标来转移社交领域的知识到协同领域。通过最大化解耦表示之间的互信息,DcRec增强了用户表示的表达能力,并在社交推荐任务中取得了优越的性能。
2、DcRec的主要贡献
- 引入了用户的解耦表示学习方法,通过在两个领域中学习解耦的用户表示来反映它们对物品和社交朋友的偏好。
- 提出了基于对比学习的框架以实现知识从社交领域转移到协同领域。
- 并通过实验验证了该模型的优越性和各个模块的有效性。
三、DcRec框架的构建
1、一些定义和符号
U :用户集合 I :物品集合 𝑚 = |U| :用户数量 𝑛 = |I| :物品数量
A𝐼 ∈ R𝑚×𝑛 :协同领域中用户和物品之间的交互关系矩阵。
A𝑆 ∈ R𝑚×𝑚 :社交领域中用户之间的社交关系矩阵。
此外,使用密集向量来表示用户和物品(即嵌入向量)其中 P𝑆 ∈ R𝑚×𝑑 和 P𝐼 ∈ R𝑚×𝑑 表示社交领域中用户的嵌入向量(维度为 𝑑),P𝐼 ∈ R𝑛×𝑑 表示协同领域中物品的嵌入向量。
2、框架的概述
本文提出的用于社交推荐的解耦对比学习框架(DcRec),它遵循通过最大化同一实例上不同视图之间的表示一致性来进行自监督对比学习的一般范式[2, 21, 39]。
所提出模型的架构如图2所示。具体而言,该模型包括三个主要组件:
(1)领域解耦(Domain Disentangling),用于将输入数据解耦为两个子领域;
(2)编码器(Encoder),在两个领域上使用不同的编码器从两个不同的视图学习表示;
(3)解耦对比学习(Disentangled Contrastive Learning),旨在通过联合优化解耦对比学习任务和主要的推荐任务,将社交领域的知识转移到推荐建模任务中。
3、Domain Disentangling(领域解耦)
为了解决社交领域和协同领域之间的语义差异问题,本文将输入数据解耦为两个领域,分别表示为协同领域中的用户-物品交互矩阵 A𝐼 和社交领域中的社交关系矩阵 A𝑆。
在领域解耦后,对每个领域的数据进行数据增强,以获得不同的视图。采用基于图的数据增强方法,如边添加(Edge Adding)、边丢弃(Edge Dropout)和节点丢弃(Node Dropout),通过独立的增强函数在社交领域和协同领域中生成两个视图。其中𝐻(·)𝑆和𝐻(·)𝐼分别表示在社交域和协作域生成两个视图的独立增强函数。
4、Encoder(编码器)
为了建模用户-物品交互和社交关系,本文利用编码器在每个领域学习用户和物品的表示。为了确保跨领域对比学习时的语义一致性,用户表示被投影到相同的语义空间中。在协同领域中,可以使用任何基于协同过滤的模型(本文使用LightGCN)作为推荐编码器,而在社交领域中,可以使用图神经网络(GNNs)方法作为编码器。
4.1 Recommendation Encoder in Collaborative Domain(协同领域的推荐编码器)
协同领域的推荐编码器旨在学习用户和物品的表示,通过对两个增强视图(即A(1)𝐼和A(2)𝐼)中的用户-物品交互进行编码。使用基于图神经网络的推荐模型LightGCN作为推荐编码器,从两个视图中获取了用户和物品的表示。
U(1)𝐼∈R𝑚×𝑑,U(2)𝐼∈R𝑚×𝑑,V(1)𝐼∈R𝑛×𝑑和V(2)𝐼∈R𝑛×𝑑是用户和项目的两个学习表示,这些表示用于进行对比学习,并使用推荐编码器通过BPR损失(公式8)来训练主任务。最终,在用户-物品交互数据上学习到的用户和物品表示用于预测。
4.2 GNNs Encoder in Social Domain(社交领域的图神经网络编码器)
社交领域的编码器旨在通过捕捉用户之间的社交关系来学习用户的表示。为此,采用了图神经网络(GNNs)作为编码器,并使用两个视图中的用户表示进行对比学习。具体地,通过GNNs编码器,利用参数𝚯𝑆对社交领域中的用户表示进行学习,得到了U(1)𝑆和U(2)𝑆。这些表示可以用于社交领域中的对比学习任务。
4.3 Semantic Projection(语义投影)
为了解决协同领域和社交领域用户表示的语义异构性问题,提出了语义投影的方法。在社交领域中,采用多层感知机(MLPs)对用户表示进行投影,得到eU(1)𝑆和eU(2)𝑆。类似地,在协同领域中也使用MLP进行投影,得到eU(1)𝐼和eU(2)𝐼。通过这种投影方法,将协同领域和社交领域的用户表示映射到相同的语义空间中,使得它们具有一致的语义表示。
5、Disentangled Contrastive Learning(解耦对比学习)
解耦的对比学习包括跨域对比学习和领域特定的对比学习。跨域对比学习旨在将社交领域的知识转移到协同领域。为了利用未标记数据下的自我监督信号,在每个领域中引入了领域特定的损失函数,以最大化相同实例在不同视图之间的表示一致性。通过这种方法,能够充分利用跨域和领域内的对比学习信号,从而提升模型在不同领域中的表示学习能力。
5.1 Cross-domain Contrastive Learning Loss(跨域对比学习损失)
为了将社交领域的知识转移到协同领域,文中设计了跨域对比学习损失函数。
该损失函数基于经过投影的用户表示(eU(1)𝑆、eU(2)𝑆、eU(1)𝐼、eU(2)𝐼)进行计算。具体而言,跨域对比学习损失由四个部分组成,𝐿(eU(1)𝑆, eU(1)𝐼)、𝐿(eU(1)𝑆, eU(2)𝐼)、𝐿(eU(2)𝑆, eU(1)𝐼)和𝐿(eU(2)𝑆, eU(2)𝐼)分别用𝐿2、𝐿3、𝐿1和𝐿4表示,分别是在不同视图下对相同用户表示进行对比的损失项。
使用常见的对比学习损失函数来度量表示之间的相似性,并通过温度参数来调整相似度的度量。通过这种方式,能够在不同领域中传递知识,并使得用户在协同领域和社交领域中的表示具有一致性。
5.2 Domain-specific Contrastive Learning Loss(特定领域的对比学习损失)
为了增强每个领域中每个实例的学习表示的表达能力,我们设计了领域特定的对比学习损失函数,在两个领域中分别进行计算:
其中,L𝑆和L𝐼分别是社交领域和协同领域的领域特定对比学习损失,计算这些损失是为了在每个领域中用于区分在不同视图下相同实例的表示。需要注意的是,在实际应用中,实验证明了在社交领域中使用投影后的表示进行领域特定对比学习可以取得良好的结果。
6、Model Optimitization(模型优化)
6.1 Primary Recommendation Task(主要推荐任务)
文中采用了学习到的用户和物品表示来进行主要推荐任务。通过计算用户 𝑢 和物品 𝑖 之间的内积,我们可以预测用户与物品之间的交互可能性得分。
为了优化这个任务,采用了贝叶斯个性化排序(BPR)损失函数。该损失函数通过比较用户与观测到的物品交互得分和用户与未观测到的物品交互得分之间的差异,来衡量模型的性能。通过最小化BPR损失函数,可以提高模型在主要推荐任务中的推荐准确性。
6.2 2.5.2 Joint Training(联合训练)
为了改善推荐性能,文中采用了联合训练策略来优化推荐损失和对比学习损失。综合损失函数包括主要推荐任务的损失、协同领域和社交领域的对比学习损失、解耦对比学习损失以及正则化项。通过联合训练可以同时优化推荐性能和对比学习的效果。
通过调整超参数 𝜆1、𝜆2 和 𝜆3,我们可以平衡不同损失和正则化项的贡献。联合训练的目标是最小化综合损失函数,以提高推荐性能和对比学习的效果。
四、实验
1、实验结果
1.1 Overall Performance Comparison(整体性能比较)
在这一部分,验证了提出的 DcRec 模型在推荐性能方面的有效性。表格1中给出了我们的模型与其他方法的综合比较结果。用于比较的基准模型包括经典的基于MF的模型、基于GNN的模型以及最近的增强型SSL模型。根据结果,可以得出以下发现:
- 在数据集上,提出的 DcRec 在所有评估指标下都达到了最佳的推荐性能,相比于强基准模型,取得了显著的改进。这些最强的基准模型在表格中用下划线标记。
- 与增强型SSL社交推荐基准模型相比,我们的方法通过解耦对比学习从社交和协同领域学习表示,融合了先进的组件,取得了显著的改进。
- 在大多数情况下,经过增强的SSL方法在数据集上在各种指标上优于没有SSL的方法。这个观察结果证明了SSL在推荐中的有效性,从实证上表明了设计领域特定的对比学习部分的必要性。
综上所述,DcRec 模型通过解耦对比学习从社交和协同领域学习表示,取得了优异的推荐性能,并且在与其他方法的比较中显示出了明显的优势。
1.2 Ablation Study on MLP(MLP的消融实验)
通过进行消融实验,验证了在DcRec模型中使用多层感知器(MLP)进行语义投影的有效性。实验结果表明,在没有MLP进行语义投影的情况下,模型在所有指标上的性能下降。这说明MLP在DcRec模型中起着重要的作用,它能够有效地提取和投影语义信息,从而提高推荐性能。因此,语义投影的设计是DcRec模型的关键组成部分,对于提升模型的推荐性能至关重要。
1.3 Sensitivity Study on 𝜆1 and 𝜆2(𝜆1 and 𝜆2的敏感性实验)
通过敏感性研究,对DcRec模型中的𝜆1和𝜆2值进行探究。实验结果表明,𝜆1值设置过大会导致性能显著下降,这是因为过大的领域特定对比学习权重会使优化过程偏离推荐任务的目标,而更加关注实例区分。对于𝜆2值,最佳值要小得多。适量的社交信息对于推荐任务有益,但过多的社交信息会对性能产生负面影响。
因此,敏感性研究提醒我们在训练DcRec模型时需要谨慎选择𝜆1和𝜆2的值,以平衡推荐任务和对比学习的贡献。合理的权衡可以提高模型的性能,从而更好地满足推荐任务的需求。
五、结论
为了建模社交领域和物品领域中用户的异质行为模式,本文提出了一种针对社交推荐的解耦对比学习框架,该框架将两个领域进行解耦,并分别学习用户在每个领域中的表示。此外,本文设计了跨领域对比学习方法,将知识从社交领域转移到物品领域,从而增强了推荐性能。。
总的来说,本文提出的解耦对比学习框架为社交推荐建模了用户的异质行为模式,通过跨领域对比学习将知识从社交领域迁移到物品领域,从而提高了推荐性能。实验结果表明了我们提出的模型的有效性,并且相对于以前的工作具有优越性。这些结果为社交推荐领域的研究和实践提供了有价值的贡献。