CGCL:Celebrity-aware Graph Contrastive Learning Framework forSocial Recommendation

论文介绍了一种新的社交推荐模型,通过名人感知的图对比学习框架来考虑社交网络中的名人效应。模型利用GNN、多任务学习和图神经网络,有效提升了推荐性能,并在多个数据集上进行了实验验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

《Celebrity-aware Graph Contrastive Learning Framework for Social Recommendation》是一篇介绍社交推荐中的名人效应的论文。论文提出了一种名人感知的图对比学习框架,旨在解决现有社交推荐方法在建模社交关系时忽视名人效应的问题。

名人效应是指在社交网络中具有影响力的个体对其他个体的影响更大,与引用网络和知识图谱等其他网络结构不同。然而,现有的社交推荐方法往往忽视了名人效应,从而限制了利用社交网络挖掘用户之间相似性的效果。为了弥补这一空白,论文提出了一种名人感知的图对比学习框架,明确地在社交领域建模名人效应。

论文中介绍了该框架的技术细节。首先,通过挖掘社交网络结构特征(如接近中心性),测量名人和普通节点的不同影响力。其次,设计了一种新颖的用户-用户影响感知聚合方法,将名人感知的影响信息融入到信息传播过程中。此外,还设计了一种基于图神经网络的框架,将社交语义与用户-物品交互建模相结合,并采用对比学习增强数据增强。

论文在三个真实世界数据集上进行了实验,并证明了所提出框架的有效性。论文还进行了消融实验,证明了模型的关键组件对推荐性能的改进作用。

二、主要贡献

该论文的贡献包括

  • 首次在社交网络中明确建模名人效应,并将其应用于社交推荐;
  • 引入了基于图对比学习的端到端对比学习框架,允许将社交信息整合到基于图对比学习的推荐系统中;
  • 通过可视化社交网络来验证所提出模型的效果。

总之,该论文提出了一种新颖的名人感知的图对比学习框架,用于社交推荐,填补了现有方法在建模社交关系时忽视名人效应的空白,并在实验中证明了其有效性。

三、框架的构建

CGCL的整体架构如图2所示。包括:(1) 嵌入层;(2) 用户-用户影响感知聚合;(3) 用户-物品图聚合;(4) 对比学习; (5) 多任务训练。

3.1 Embedding Layer

嵌入层,采用了两个嵌入矩阵,分别是物品嵌入矩阵和用户嵌入矩阵,通过索引可以直接访问对应的嵌入。这些嵌入矩阵使用了均匀的Xavier初始化方法。需要注意的是,用户-用户图和用户-物品图共享同一个用户嵌入矩阵。在接下来的部分,将介绍其他组成部分,包括用户-用户影响感知聚合、用户-物品图聚合、对比学习和多任务训练。

3.2 User-User Impact-Aware Aggregation

在本节中,介绍了用户-用户影响感知聚合模块。该模块作为用户-用户图的编码器,用于聚合相邻用户以捕捉社交网络中的相关关系。为了考虑社交网络中的名人效应,引入了影响感知的聚合方法。通过影响值来衡量节点在网络中的影响力,并在信息传播过程中考虑了归一化的影响力值。

使用归一化的影响感知系数来计算相邻用户的聚合结果,并进行信息传播。最终得到用户在用户-用户图上的嵌入表示。

3.2.1 Impact calculation 影响力计算

在本节中,介绍了计算节点影响力的方法。采用了五种不同的指标来评估节点的重要性,包括PageRank、度中心性、特征向量中心性、接近中心性和中介中心性。PageRank是一种通过分析入链结构计算节点重要性的算法,度中心性是根据节点的邻居数量来衡量节点的影响力,特征向量中心性根据节点邻居的重要性来衡量节点的影响力。通过这些指标可以综合考虑节点自身的特征以及其邻居节点的重要性,计算节点的影响力。

影响力计算。我们从不同的角度考察节点的影响力。具体而言,我们利用五种指标来评估节点的重要性,包括PageRank [27]、度中心性、特征向量中心性 [3]、接近中心性 [14] 和中介中心性 [13]。具体细节如下所述。

PageRank是一种通过分析入链结构计算图中节点重要性的算法。最初用于网页排名,我们将其应用于评估社交网络中节点的影响力。我们通过为每条无向边引入两条有向边,将无向图G𝑆转化为有向图,以便应用PageRank算法。

其中,𝑑是阻尼因子,在本文中设置为通常值0.85 [4]。

在社交网络的背景下,度中心性是根据节点的邻居数量来衡量节点的影响力的指标。直观地说,在社交网络中,拥有更多粉丝的人被认为具有更大的影响力。

节点的影响力取决于其度数以及邻居节点的重要性。特征向量中心性根据节点邻居的状态来衡量节点的影响力:

其中,𝜆是矩阵𝑆的绝对值最大特征值。

接近中心性通过确定节点到网络中其他可访问节点的平均距离来评估节点的影响力。直观地说,在社交网络中,离其他节点更近的节点更有可能是名人:

其中,函数 𝑑(𝑖, 𝑗) 计算节点 𝑖 和 𝑗 之间的最短路径距离。𝑛 表示可访问节点的数量。

中介中心性的概念通过量化通过节点的最短路径数量来评估节点在网络中的影响力。这个指标从连通性的角度衡量节点在社交网络中的重要性:

其中,𝜎(𝑝, 𝑞) 是最短路径的数量,𝜎(𝑝, 𝑞|𝑖) 是通过节点 𝑖 而不是节点 𝑝, 𝑞 的路径数量。

在社交网络中,我们使用贝叶斯个性化排序 [30] (BPR) 损失函数作为成对损失,以促进对观察到的条目相对于未观察到的条目具有更高的预测值:

其中,𝑢+ 是节点 𝑢 在 G𝑆 上的邻居。𝑢− 是从没有与 𝑢 有社交关系的用户中随机抽取的。𝑠𝑖𝑔𝑚𝑜𝑖𝑑() 是 sigmoid 函数。

3.3 User-Item Graph Aggregation

该模型使用了用户-物品图进行消息聚合,以建模用户和物品之间的交互。它采用了简单的归一化加权和进行聚合操作,而无需对嵌入向量进行线性变换。用户嵌入是通过聚合用户交互的物品得到的,而物品嵌入是通过聚合与其交互的用户得到的。通过对用户和物品嵌入进行多层计算,并将最终的嵌入通过平均操作得到。

模型中唯一可训练的参数是第0层的初始用户和物品嵌入。使用BPR损失函数作为成对度量,该函数通过提高观察到的用户-物品交互的预测值相比未观察到的交互,增强了模型基于用户偏好进行物品推荐的能力。

总的来说,该模型通过用户-物品图的消息聚合和BPR损失函数的优化,可以学习到用户和物品的嵌入表示,用于推荐系统中的个性化推荐任务。

3.4 Contrastive Learning

该论文提出了一种基于对比学习的方法来应对冷启动和去噪挑战,并将其应用于用户-物品图推荐算法中。

具体来说,论文使用了边缺失来进行数据增强,通过在用户-物品图上创建两个版本的图来模拟缺失边。

然后,利用对比学习中的InfoNCE对比损失函数,最大化正样本对之间的一致性,最小化负样本对之间的一致性。这样可以学习到更具有区分性的用户和物品嵌入表示。

对于用户嵌入,通过在两个版本的图上计算最终的用户嵌入,并使用余弦相似度函数来度量它们的相似性。对于物品嵌入,也采用相同的方法计算最终的物品嵌入。最终的对比损失是用户和物品侧对比损失的总和。

通过这种对比学习的方法,可以提高推荐算法在冷启动和去噪情况下的性能,增强了模型对于用户和物品之间交互的建模能力。

3.5 Multi-task Training

该论文采用了多任务学习的方法来优化三个任务。其中,用户-物品交互建模任务(公式10)是主要任务,而用户-用户关系建模任务(公式8)和自监督任务(公式12)则是辅助任务。

在训练阶段,通过最小化主要任务的损失函数以及辅助任务的损失函数,同时优化三个任务。通过随机采样正样本和负样本用户对来计算自监督任务的损失函数。

在推断阶段,通过计算用户和物品在推荐领域的嵌入向量之间的点积,来预测用户和物品之间的交互概率。

通过采用多任务学习的方法,可以综合考虑用户-物品交互建模、用户-用户关系建模和自监督任务,从而提高推荐算法的性能和效果。

四、总结

在这篇论文中,我们提出了一种名人感知的基于GNN的社交推荐模型CGCL,该模型在社交领域中明确建模了广泛存在的名人效应。CGCL采用多任务学习框架,将社交领域损失和自监督损失融入到推荐模型的训练中,提高了模型的性能。我们在真实世界的三个数据集上进行了广泛的实验证明了模型的有效性,并通过消融实验验证了关键组件的必要性。我们还通过可视化社交网络展示了对名人效应建模的有效性。

未来的研究方向包括将名人效应建模应用于其他涉及社交关系建模的任务,例如社交网络链接预测,以评估方法的泛化能力和实用性。另一个潜在的研究方向是研究不同图结构对计算社交影响力方法的影响,从而提供有关这些方法在不同环境中适用性的宝贵见解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值