A Study of Share Recommendation in Social E-commerce
《社交电商中的分享推荐研究》
该论文收录于35th AAAI 2021: Virtual Event
CCF A 类会议
原文链接
文章目录
一、摘要
社交电商的蓬勃发展催生了多样化的推荐需求,并伴随着一种新的推荐模式——分享推荐。
与传统的二元推荐不同,分享推荐模型是<User, Item, Friend>之间的三元交互,旨在向想要分享特定项目的用户推荐最有可能的朋友,逐渐成为社交电商不可或缺的服务。
分享推荐通过整合社交关系和购买行为,提高了用户粘性并通过用户影响力变现
但是遇到了三个挑战:丰富的异构信息、复杂的三元交互和不对称的分享行为。
本文提出了一种基于异构图神经网络的共享推荐模型,称为 HGSRec。
HGSRec 包括一个三方异构 GNN 来描述用户和项目的多重特征,然后通过使用双重共同注意机制捕获潜在的三元依赖关系来动态融合这些信息,然后利用三元组来描述共享动作的不对称性并预测是否发生共享操作。
离线实验证明了 HGSRec 的优越性,与现有技术相比有显著改进(11.7%-14.5%),淘宝平台上的在线 A/B 测试进一步证明了 HGSRec 的高工业实用性和稳定性。
分享推荐和二元推荐的比较:
二、简介
由于以下特点,分享推荐一直是社交电子商务中一种独特的推荐模式:
首先,分享推荐结合了社交关系和物品推荐的优点。大多数用户同时存在于商业网络和社交网络中,因此用户非常了解他的购买项目,也了解他的朋友。分享推荐不仅可以增强用户的粘性和活跃度,还可以将用户影响力变现(例如注意力经济和网红经济)。其次,分享推荐具有可靠性。由于用户既知道推荐的商品,也了解他的朋友,所以用户的分享行为对他的朋友来说是可信的,这增加了推荐的可靠性,从而有利于购买行为。
分享推荐的目标是预测 <User、Item、Friend>之间的三元交互,即用户是否会与朋友分享某项,最大化概率 P (u3|u2, i3)。
分享推荐需要解决以下问题:
1、丰富的异构信息
分享推荐通常包含复杂的异构信息,包括用户和物品之间复杂的交互,以及大量用户和物品的特征信息。这样的例子如下图所示。需要处理复杂的交互并同时利用不同的特征的问题。
2、复杂的三元交互
需要考虑一个分享行为的适用性,评估三个对象(例如,u2,i3,u3)在分享动作中的匹配程度。根据推荐物品的特点,用户会将其推荐给合适的朋友,因此应该考虑该物品对用户(或朋友)的影响。
在上图中,用户 u2 会将鞋子 i3 分享给他的同学 u3,而不是他的妈妈 u1。所以需要对用户、物品和朋友的三元交互进行建模,考虑它们的适用性。
3、非对称分享行为
分享动作是不对称且不可逆的,这意味着如果交换用户和朋友的角色,分享行为可能不会发生。
用户 u2 可以将一件女式大衣 i1 分享给他的妈妈 u1,而用户 u1 不会将女式大衣 i1 分享给她的儿子 u2。因此,理想的模型应