文献调研ACL: Activating Capability of Linear Attention for Image Restoration

本文创新性提出了LMAM,还有MDC两个模块 旨在解决传统卷积神经网络(CNN)和基于Transformer方法在处理全局感受野和计算效率方面的局限性。通过将线性注意力(Linear Attention, LA)集成到Mamba结构中,ACL在保持计算效率的同时,增强了全局特征依赖性,并通过多尺度膨胀卷积模块(MDC)提升了局部细节的恢复能力。 

Mamba固有的一维扫描限制,最近的方法引入了多方向扫描以增强序列间的相关性。尽管有这些增强,这些方法仍然难以管理不同方向的局部像素相关性。

LAMA是将SSM换为线性注意力,而GatedCNNBlock是直接去掉SSM。LAMA和MambaOut都从侧面说明了Mamba在一些任务上的效果不如卷积和注意力。

LA 线性注意力,把Mamba中的SSM给替换了,其的涉及参照了Transformer中的Q,K,V,但是计算公式不是用的softmax来计算的,而是 直接先与V相乘,复杂度就是O(N*d^2),而d是个固定值,所以复杂度就是O(N),

# 线性注意力计算过程(论文公式11-13)
KV = Kᵀ·V                    # 特征维度先聚合
F_atten = Q·KV               # 查询与聚合特征交互
F_atten = F_atten + Conv_pos(F₂)  # 加入位置编码

【即插即用模块】CVPR 2025 | LAMA:Mamba平替!线性注意力+双局部增强,既轻又准! - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值