1、画图,把题目的容器画出来:球形容器,半径为R 2、根据容器的形状进行分析: 抽水的实质是不同深度的水抽出去走的位移是不一样的=>抽水的过程 : (1)先考虑深度为 x到x+dx 的薄层水抽出去做多少功:dw=F×l(即做功的微元=力乘以位移) (2)l = R - x ;F = ρ×v×g ( 密度乘以重力加速度乘以薄层水的体积 ) (3)薄层水的体积可以近似的看成是一个圆柱体,半径为 y,高为dx ;所以薄层水的体积为:Π×y×y×dx(即Π乘y的平方乘以dx) (4)因为ρ题目未说所以默认为 1 ;所以dF=g×Π×y×y×dx (5)又因为是对x的积分所以要把 y 转换成x的函数;圆的方程为 x^2 + y^2 = R^2 =>dw=gΠ(R^2-x^2)(R-x)dx (为薄层力做的功即功的微元) 3、对功的微元积分,积分区间为[-R , R] 4、因为积分区间是对称区间,所以根据被积函数的奇偶性(此处用了两次),可以快速算出答案 这类题目核心在于建立力做功的微元,懂了原理,其他的题目都是换不同的容器