这里有三道关于定积分在物理学应用中的问题,分别涉及抽水做工、引力大小和水下压力:
问题一:抽水做工
一个圆柱形水箱高 10 米,半径为 5 米,装满了水。需要将水全部抽到水箱顶部以上 2 米高的地方。水的密度为 1000 kg/m³,重力加速度为 9.8 m/s²。求所需做的功。
提示: 将水箱划分成许多薄圆盘,计算每个薄圆盘提升到目标高度所需的功,然后用定积分求出总功。 需要考虑每个薄圆盘的质量和提升高度。
问题二:引力大小
一根长度为 L 米的均匀细棒,线密度为 λ kg/m。求一个质量为 m kg 的质点位于细棒延长线上,距离细棒一端距离为 a 米处受到的引力大小。 万有引力常数为 G。
提示: 将细棒划分成许多微小的线段,计算每个微小线段对质点的引力,然后用定积分求出总引力。 需要注意引力的方向和大小都随距离变化。 你需要用到万有引力定律: F = G m 1 m 2 r 2 F = G \frac{m_1 m_2}{r^2} F=Gr2m1m2
问题三:水下压力
一个长方形挡板垂直放置在水中,其上端距离水面 2 米,下端距离水面 6 米。挡板宽 4 米,水密度为 1000 kg/m³,重力加速度为 9.8 m/s²。求挡板所受水的总压力。
提示: 将挡板划分成许多水平的窄条,计算每条窄条所受的压力,然后用定积分求出总压力。 需要考虑每条窄条的深度和面积。 水的压力随着深度线性增加,可以使用公式 P = ρ g h P = \rho g h P=ρgh,其中 P 是压力,ρ 是密度,g 是重力加速度,h 是深度。
问题一:抽水做工
-
设坐标系: 以水箱底部为原点,向上为正方向建立坐标系。 则水面的高度为 10m,需要将水抽到 12m 高度。
-
考虑一个薄圆盘: 取一个厚度为 dy 的薄圆盘,位于 y 处。 该圆盘的体积为 dV = πr²dy = π(5)²dy = 25πdy m³。
-
计算薄圆盘的质量: dm = ρdV = 1000 * 25πdy = 25000πdy kg。
-
计算提升薄圆盘的功: 该圆盘需要提升到 12m 高度,提升高度为 12 - y 米。 提升该圆盘所需的功为 dW = dm * g * (12 - y) = 25000πdy * 9.8 * (12 - y) = 245000π(12 - y)dy J。
-
积分求总功: 总功为所有薄圆盘提升功的积分:
W = ∫ 0 10 245000 π ( 12 − y ) d y = 245000 π ∫ 0 10 ( 12 − y ) d y W = \int_0^{10} 245000π(12 - y) dy = 245000π \int_0^{10} (12 - y) dy W=∫010245000π(12−y)dy=245000π