定积分的物理应用:抽水做工、引力大小、水下压力

这里有三道关于定积分在物理学应用中的问题,分别涉及抽水做工、引力大小和水下压力:

问题一:抽水做工

一个圆柱形水箱高 10 米,半径为 5 米,装满了水。需要将水全部抽到水箱顶部以上 2 米高的地方。水的密度为 1000 kg/m³,重力加速度为 9.8 m/s²。求所需做的功。

提示: 将水箱划分成许多薄圆盘,计算每个薄圆盘提升到目标高度所需的功,然后用定积分求出总功。 需要考虑每个薄圆盘的质量和提升高度。

问题二:引力大小

一根长度为 L 米的均匀细棒,线密度为 λ kg/m。求一个质量为 m kg 的质点位于细棒延长线上,距离细棒一端距离为 a 米处受到的引力大小。 万有引力常数为 G。

提示: 将细棒划分成许多微小的线段,计算每个微小线段对质点的引力,然后用定积分求出总引力。 需要注意引力的方向和大小都随距离变化。 你需要用到万有引力定律: F = G m 1 m 2 r 2 F = G \frac{m_1 m_2}{r^2} F=Gr2m1m2

问题三:水下压力

一个长方形挡板垂直放置在水中,其上端距离水面 2 米,下端距离水面 6 米。挡板宽 4 米,水密度为 1000 kg/m³,重力加速度为 9.8 m/s²。求挡板所受水的总压力。

提示: 将挡板划分成许多水平的窄条,计算每条窄条所受的压力,然后用定积分求出总压力。 需要考虑每条窄条的深度和面积。 水的压力随着深度线性增加,可以使用公式 P = ρ g h P = \rho g h P=ρgh,其中 P 是压力,ρ 是密度,g 是重力加速度,h 是深度。

问题一:抽水做工

  1. 设坐标系: 以水箱底部为原点,向上为正方向建立坐标系。 则水面的高度为 10m,需要将水抽到 12m 高度。

  2. 考虑一个薄圆盘: 取一个厚度为 dy 的薄圆盘,位于 y 处。 该圆盘的体积为 dV = πr²dy = π(5)²dy = 25πdy m³。

  3. 计算薄圆盘的质量: dm = ρdV = 1000 * 25πdy = 25000πdy kg。

  4. 计算提升薄圆盘的功: 该圆盘需要提升到 12m 高度,提升高度为 12 - y 米。 提升该圆盘所需的功为 dW = dm * g * (12 - y) = 25000πdy * 9.8 * (12 - y) = 245000π(12 - y)dy J。

  5. 积分求总功: 总功为所有薄圆盘提升功的积分:

W = ∫ 0 10 245000 π ( 12 − y ) d y = 245000 π ∫ 0 10 ( 12 − y ) d y W = \int_0^{10} 245000π(12 - y) dy = 245000π \int_0^{10} (12 - y) dy W=010245000π(12y)dy=245000π

### 关于定积分应用的习题集推荐 针对高等数学中定积分应用,可以参考以下两份经典资料: #### 1. 华东师范大学版《数学分析》课后习题 华东师范大学编写的《数学分析》教材及其配套课后习题涵盖了丰富的定积分理论与实际应用案例[^1]。这些题目不仅涉及基本计算技巧,还深入探讨了几何意义、物理模型以及经济领域中的具体应用场景。 例如,在几何方面有求平面图形面积、旋转体体积等问题;物理学上则包括变力做功、液体压力等复杂情境下的建模练习。通过解决这些问题,学生能够更加深刻理解定积分概念并提升解决问题的能力。 #### 2. 吉米多维奇《数学分析习题集》 作为国际知名的微积分训练手册,《吉米多维奇数学分析习题集》提供了大量高质量且难度适中的定积分应用型试题[^2]。特别是其第三册专门讨论了多元函数积分相关内容之前章节也包含了详尽的一维情形处理办法——从简单到复杂的逐步引导过程使得初学者易于接受同时也挑战高级使用者思考更多可能性。 书中每道例题都配有详细解答步骤说明,并附带额外提示用于启发独立探索精神。此外,“学习指引”版本更是增加了许多实用性的补充材料如历史渊源介绍或者跨学科关联解释等内容进一步增强了书籍实用性。 虽然目前无法直接提供PDF下载链接,但建议可以通过正规渠道购买正版图书或访问各大高校图书馆资源库获取电子副本文件形式阅读体验更好同时支持作者创作权益保护工作持续开展下去。 ```python # Python 示例代码展示如何数值近似计算定积分 (仅作演示用途) from scipy.integrate import quad def integrand(x): return x**2 result, error = quad(integrand, 0, 1) print(f"The result of the integral is {result} with an estimated error of {error}.") ``` 上述Python脚本展示了使用SciPy库来实现对特定区间内的连续函数进行精确度较高的数值积分运算操作流程图解教程适合编程爱好者尝试实践加深印象巩固所学知识点效果显著优于单纯记忆公式法则等方式方法论层面考虑更为全面周到兼顾长远发展需求特点鲜明值得推广普及开来让更多人受益匪浅收获满满! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值