原创作者:RS迷途小书童
1 K-Means算法介绍
K-means聚类算法是一种无监督学习算法,主要用于数据聚类。该算法的主要目标是找到一个数据点的划分,使得每个数据点与其所在簇的质心(即该簇所有数据点的均值)之间的平方距离之和最小。
在K-means聚类算法中,首先需要预定义簇的数量K,然后随机选择K个对象作为初始的聚类中心。接着,算法会遍历数据集中的每个对象,根据对象与各个聚类中心的距离,将每个对象分配给距离它最近的聚类中心。完成一轮分配后,算法会重新计算每个簇的聚类中心,新的聚类中心是该簇所有对象的均值。这个过程会不断重复,直到满足某个终止条件,如没有(或最小数目)对象被重新分配给不同的簇,没有(或最小数目)簇的中心再发生变化,或者误差平方和局部最小。
2 Python代码