【Lidar】Open3D点云K-Means聚类算法:基于距离的点云聚类(单木分割)附Python代码

原创作者:RS迷途小书童

博客地址:https://blog.csdn.net/m0_56729804?type=blog

1 K-Means算法介绍

        K-means聚类算法是一种无监督学习算法,主要用于数据聚类。该算法的主要目标是找到一个数据点的划分,使得每个数据点与其所在簇的质心(即该簇所有数据点的均值)之间的平方距离之和最小。

        在K-means聚类算法中,首先需要预定义簇的数量K,然后随机选择K个对象作为初始的聚类中心。接着,算法会遍历数据集中的每个对象,根据对象与各个聚类中心的距离,将每个对象分配给距离它最近的聚类中心。完成一轮分配后,算法会重新计算每个簇的聚类中心,新的聚类中心是该簇所有对象的均值。这个过程会不断重复,直到满足某个终止条件,如没有(或最小数目)对象被重新分配给不同的簇,没有(或最小数目)簇的中心再发生变化,或者误差平方和局部最小。

2 Python代码

 

Lidar点云分割聚类算法是一种利用激光雷达扫描数据进行地物分类和分析的算法激光雷达通过发射激光束并接收反射回来的信号,可以获取到地物的三维坐标信息。而激光雷达扫描得到的原始数据是一组离散点的信息,需要进行分割聚类处理才能得到有意义的结果。 点云分割算法的主要目标是将原始点云数据分割成不同的地物部分。常用的分割算法有基于几何特征和基于特征提取的方法。基于几何特征的算法主要依靠点云中点的相邻关系进行分割,比如根据点间距、法线方向等信息来判断是否属于同一地物。而基于特征提取的算法则通过对点云进行特征提取,比如曲率、形状描述子等,根据不同特征之间的相似性进行聚类,从而实现点云分割点云聚类算法则是对分割后的点云进行进一步的聚类,将属于同一地物的点划分为一个簇。聚类算法常用的方法包括基于密度和基于连通关系的方法。基于密度的聚类算法通过确定点的密度来判断是否属于同一簇,如DBSCAN算法。而基于连通关系的聚类算法则依靠点之间的连通关系进行划分,比如基于区域生长的算法。 通过点云分割聚类算法,可以有效地提取地物的相关信息,如建筑物、树木、道路等,为后续的地物识别、地物分类、场景分析等应用提供有价值的数据基础。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RS迷途小书童

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值