DALL·E Flow 学习资源汇总 - 人工智能图像生成的创新工作

DALL·E Flow 简介

DALL·E Flow 是一个由 Jina AI 开发的人工智能图像生成工作流,它可以从文本提示创建高清图像。这个工作流结合了多个先进的 AI 模型,包括 DALL·E-Mega、GLID-3 XL 和 Stable Diffusion 来生成图像候选,然后使用 CLIP-as-service 对候选进行排序。用户可以选择喜欢的图像进行进一步的优化和放大,最终得到高质量的 1024x1024 像素图像。

DALL·E Flow 采用客户端-服务器架构,具有高可扩展性、非阻塞流式传输和现代化的 Python 接口。它为创意艺术家和设计师提供了一个强大而灵活的工具,可以探索 AI 辅助的图像生成的无限可能性。

学习资源

1. 官方资源

2. 文档和教程

3. 视频教程

4. 社区资源

5. 相关项目

使用示例

以下是使用 DALL·E Flow 生成图像的基本步骤:

  1. 安装必要的依赖:
pip install "docarray[common]>=0.13.5" jina
  1. 连接到 DALL·E Flow 服务器:
server_url = 'grpcs://dalle-flow.dev.jina.ai'
  1. 生成初始图像:
from docarray import Document

prompt = '一个机器人下棋的油画,马蒂斯风格'
doc = Document(text=prompt).post(server_url, parameters={'num_images': 8})
da = doc.matches
da.plot_image_sprites(fig_size=(10,10), show_index=True)
  1. 选择并优化图像:
fav_id = 3
fav = da[fav_id]
diffused = fav.post(f'{server_url}', parameters={'skip_rate': 0.5, 'num_images': 36}, target_executor='diffusion').matches
diffused.plot_image_sprites(fig_size=(10,10), show_index=True)
  1. 放大最终图像:
dfav_id = 34
fav = diffused[dfav_id]
fav = fav.post(f'{server_url}/upscale')
fav.display()

通过这个工作流,你可以从一个简单的文本提示开始,逐步优化和放大,最终得到一张高质量的 AI 生成图像。

DALL·E Flow 示例图像

DALL·E Flow 为 AI 辅助的创意工作开辟了新的可能性。无论你是艺术家、设计师还是技术爱好者,都可以尝试使用这个强大的工具来探索 AI 图像生成的潜力。通过本文提供的学习资源,你可以快速上手 DALL·E Flow,开始创作出令人惊叹的 AI 艺术作品。

文章链接:www.dongaigc.com/a/dalle-flow-learning-resources

https://www.dongaigc.com/a/dalle-flow-learning-resources

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值