Rosenblatt感知器

本文介绍了使用Python进行线性回归的基本步骤,通过豆豆散点图展示数据分布,利用误差和学习率(α)调整模型参数,使用numpy和matplotlib库实现过程。
摘要由CSDN通过智能技术生成

a(误差乘以一个系数alpha,调整每次修正的时候幅度,这个alpha也就是所谓的“学习率”,让误差乘以学习率是为了防止调整幅度过大,但太小的学习率会让这个调整的过程磨磨唧唧)

import dataset
from matplotlib import pyplot as plt

# 画豆豆散点图
xs, ys = dataset.get_beans(100)
print(xs)
print(ys)
plt.title("size-toxicity Fuction", fontsize=12)
plt.xlabel('bean size')
plt.ylabel("toxicity")
plt.scatter(xs, ys)
# 确定曲线
w = 0.5
# 数据
for m in range(100):
        for i in range(100):
            x = xs[i]
            y = ys[i]
            y_pre = w * x
            e = y - y_pre
            alpha = 0.05
            w = w + alpha * e * x

y_pre = w * xs
print(y_pre)
plt.plot(xs, y_pre)
plt.show()

dataset代码

import numpy as np

def get_beans(counts):
	xs = np.random.rand(counts)
	xs = np.sort(xs)
	ys = [1.2*x+np.random.rand()/10 for x in xs]
	return xs,ys

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值