参考文献:
[1] Transformer模型详解(图解最完整版) - 知乎 (zhihu.com)
[2] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
目录
一、Transformer 整体结构
-
Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。
-
Transformer由一个编码器(Encoder)堆栈和一个解码器(Decoder)堆栈组成,每个编码器堆栈(解码器堆栈)由6个编码器(解码器组成)
-
将 这个编码器和解码器进行放大,我们可以得到:
-
self-attention(multi-head)(多头自注意力机制,Multi-Head Attention)
-
feed forward(前馈神经网络)
-
Add & Norm(加和与归一化,一种常见的残差连接操作)
-
“Add” 表示直接将输入与输出相加,避免输入信息在网络中消失
-
“Norm” 则表示针对相加后的结果进行标准化(归一化)操作,可以保持梯度的稳定性,促进网络收敛
-
-
工作的大体流程
概念:
Embedding:将输入的离散化表示(如单词、字符等)映射为实数向量(即连续的空间)表示,作为原始数据的 Feature。在Transformer模型中,通过一个线性变换(即矩阵乘法)将输入的离散化表示映射为了连续实数空间的向量表示,这个过程就是embedding
-
第一步:获取输入句子的每一个单词的表示向量 X,X由单词的 Embedding 和单词位置的 Embedding 相加得到。
-
第二步:将得到的单词表示向量矩阵 (如上图所示,每一行是一个单词的表示 x) 传入 Encoder 中,得到句子所有单词的编码信息矩阵 C
单词向量矩阵用
表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。如下图:
-
第三步:Encoder 输出的编码信息矩阵 C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。
上图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符 "<Begin>",预测第一个单词 "I";然后输入翻译开始符 "<Begin>" 和单词 "I",预测单词 "have",以此类推。这是 Transformer 使用时候的大致流程
-
二、Transformer 的输入
前面说过,Transformer 中单词的输入表示 x由单词 Embedding 和位置 Embedding (Positional Encoding)相加得到。
2.1 单词 Embedding
单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。
2.2 位置 Embedding
位置 Embedding 用 PE表示,PE 的维度与单词 Embedding 是一样的。PE 可以通过训练得到,也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:
其中,pos 表示单词在句子中的位置,d 表示 PE的维度 (与词 Embedding 一样),2i 表示偶数的维度,2i+1 表示奇数维度 (即 2i≤d, 2i+1≤d)
使用这种公式计算 PE 有以下的好处:
-
使 PE 能够适应比训练集里面所有句子更长的句子,假设训练集里面最长的句子是有 20 个单词,突然来了一个长度为 21 的句子,则使用公式计算的方法可以计算出第 21 位的 Embedding。
-
可以让模型容易地计算出相对位置,对于固定长度的间距 k,PE(pos+k) 可以用 PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。
三、Self-Attention(自注意力机制)
-
Multi-Head Attention:由多个 Self-Attention组成。
-
Encoder block 包含一个 Multi-Head Attention
-
Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)
-
-
Add & Norm:加和与归一化,一种常见的残差连接 Residual Connection 操作
-
“Add” 表示直接将输入与输出相加,避免输入信息在网络中消失,即网络退化
-
“Norm” 则表示针对相加后的结果进行标准化(归一化)操作,可以保持梯度的稳定性,促进网络收敛
-
3.1 Self-Attention 结构
上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。
-
Self-Attention 输入:输入(单词的表示向量 x 组成的矩阵 X ) 或者上一个 Encoder block 的输出。
-
Q, K, V:通过 Self-Attention 的输入进行线性变换得到。
3.2 Q, K, V 的计算
Self-Attention 的输入用矩阵 X 进行表示,则可以使用线性变阵矩阵WQ, WK, WV计算得到Q, K, V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。
3.3 Self-Attention 的输出
计算 Self-Attention 的输出公式如下:
-
dk 是 Q,K 矩阵的列数,即向量维度。
首先是Q乘以K的转置:
-
得到的矩阵行列数都为 n,n 为句子单词数(即图中的1,2,3,4)
-
此矩阵表示单词之间的 attention 强度
-
为了防止内积过大,因此除以 dk 的平方根
然后是归一化:
-
使用 Softmax 计算每一个单词对于其他单词的 attention 系数
-
这里的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1。
最后和 V 相乘:
备注:
-
Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数
-
最终单词 1 的输出 Z1 等于所有单词 i 的值 V 根据 attention 系数的比例加在一起得到
如何理解 Q K V?我觉得首先 Q 和 K ,一个是要查找的东西(Q),一个是被查找的东西(K),这样的两个矩阵相乘,首先得到的是要查找的东西对每个被查找的东西的相关程度,而 V 的本源和 K 相同,V就是 K 的价值,有些 K 和 Q 的相关性很高,但他的 V 并不高,因此并不值得关注,而有些 K 的 V 就很高,这样下来,V 就是所有 K 的权重,我们就可以在最后乘上 V 后就能知道什么最值得关注(价值高而且相关性高),这就是注意力机制。
3.4 Multi-Head Attention
Multi-Head Attention 是由多个 Self-Attention 组合形成,结构如下:
-
实际上,Multi-Head Attention 包含多个 Self-Attention 层
-
首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z
-
举例:当 h = 8 时,MHA 会输出8个 Z 。
-
Multi-Head Attention 将它们拼接在一起 (Concat)
-
然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z
-
这里线性变换后的列数重新变为了输入矩阵的列数。
-
因此 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。
-
四、Encoder 结构
重新回顾结构,一个Encoder Blocker 由 Add & Norm、Feed Forward、Multi-Head Attention 组成。
4.1 Add & Norm 结构
其计算公式如下:
-
X 表示 Multi-Head Attention 或者 Feed Forward 的输入
-
MultiHeadAttention(X) 和 FeedForward(X) 表示输出(输出与输入 X 维度是一样的,所以可以相加)
-
Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:
-
Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的(归一化操作通常包括计算输入的均值和方差,并应用缩放和平移操作,以使其具有标准差是 1,平均值为 0 的分布),这样可以加快收敛。
4.2 Feed Forward
是一个简单的前馈神经网络,公式如下:
-
一共两层全连接层,第一层激活函数为 Relu,第二层没有激活函数。
全连接层:将输入数据进行矩阵乘法并加上一个偏置向量,得到输出结果。即 y = Wx + b,W权重矩阵和 b偏置向量通过训练神经网络来确定。
Relu:当输入张量中元素小于零时,该函数将它们替换为零;否则保持不变。
-
X 是输入,Feed Forward 最终得到的输出矩阵的维度与 X 一致。
4.3 组成 Encoder
-
Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵 X (n*d),并输出一个矩阵 O (n*d) 。通过多个 Encoder block 叠加就可以组成 Encoder。
-
第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。
五、Decoder 结构
-
包含两个 Multi-Head Attention 层。
-
第一个 Multi-Head Attention 层采用了 Masked 操作。
-
第二个 Multi-Head Attention 层的K, V矩阵使用 Encoder 的编码信息矩阵C进行计算,而Q使用上一个 Decoder block 的输出计算。
-
最后有一个 Softmax 层计算下一个翻译单词的概率。
5.1 第一个 Multi-Head Attention
这里使用了类 Teacher Forcing 的技术。
Teacher Forcing:一种在训练序列生成模型(如语言模型、机器翻译模型等)中常用的技术。在训练过程中,Teacher Forcing 通过将模型的真实目标序列作为输入来辅助模型的训练。
在序列生成任务中,通常采用逐步生成的方法,即每个时间步生成一个输出。在没有 Teacher Forcing 的情况下,模型在每个时间步仅根据前一个时间步的输出进行预测。然而,这种方式容易导致累积误差的积累,尤其是对于较长的序列。
Teacher Forcing 的思想是,在训练过程中,在模型生成的每个时间步,将真实的目标输出作为模型的输入,而不是使用模型自身生成的输出。这样做可以有效地加速模型的收敛,并减少累积错误的影响。通过引入真实目标序列,模型能够更好地学习到正确的输出模式和上下文信息。
然而,需要注意的是,在实际应用中,我们可能无法获得完全正确的目标序列,因此在推断阶段(生成阶段)不使用 Teacher Forcing 是常见的做法。在推断阶段,模型需要依靠自己的预测结果生成输出序列。
Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。
而在Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 "<Begin>" 预测出第一个单词为 "I",然后根据输入 "<Begin> I" 预测下一个单词 "have"。
Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 (<Begin> I have a cat) 和对应输出 (I have a cat <end>) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意:Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 "<Begin> I have a cat <end>"。
这里的并行化训练指的是 一句话 直接投入训练当中,而无需与Inference(推断阶段,即使用模型)时所进行的,一个一个输入,相同。下图是在使用模型时的场景,与此时的并行化训练作对比。
![]()
-
第一步:准备Decoder 的输入矩阵和 Mask 矩阵。
-
输入矩阵包含 "<Begin> I have a cat" (0, 1, 2, 3, 4) 五个单词的表示向量
-
Mask 是一个 5×5 的矩阵。在 Mask 可以发现单词 0 只能使用单词 0 的信息,而单词 1 可以使用单词 0, 1 的信息,即只能使用之前的信息。
-
-
第二步:通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q和 K^T 的乘积 QK^T 。
-
第三步:在得到 QK^T 之后,我们先使用Mask矩阵遮挡住每一个单词之后的信息,得到 Mask QK^T ,然后再进行例行的 Softmax,计算 attention score。遮挡操作如下:
进行 Softmax 后,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0。
-
第四步:使用 Mask QK^T 与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量 Z1(即矩阵 Z 的第一行)是只包含单词 1 信息的。
-
第五步:通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵 Zi ,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出 Zi 然后计算得到第一个 Multi-Head Attention 的输出Z,Z与输入X维度一样。(下方图借用Encoder的讲解图,实际上单词数量(行数)不对)
5.2 第二个 Multi-Head Attention
-
Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。
-
根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。
-
这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。
5.3 Softmax 预测输出单词
多个Decoder block 最终组合成 Decoder。
Decoder 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z0 只包含单词 0 的信息,如下:
Softmax 根据输出矩阵的每一行预测下一个单词:
由此构成了一个 Decoder Block。多个 Decoder block 组合成 Decoder。