对 MODNet 网络结构直接剪枝的探索

1 写在前面

在前面的文章中,笔者与小伙伴们分享了对 MODNet 主干网络部分以及其余分支分别剪枝的探索历程,即先分解、再处理、后融合的手法。然而,

马克思曾深刻地思考社会的全面性,强调社会是一个复杂而相互关联的整体。在他的《资本论》中,他突显了社会结构的总体性,认为理解社会现象需要考虑各个层面的相互作用。正如马克思强调的那样,我们不能孤立地看待社会中的一部分,而是应该以全面、整体的视角去考虑其内在关系和矛盾。

在这个思想的启发下,笔者将 MODNet 作为一个整体,直接做剪枝处理。同样,我们还是借助 NNI 工具库实现模型剪枝与加速。

2 遇到问题

在这里插入图片描述

由于 MODNet 中计算维度较大,超出了PyCharm默认的内存限制。

3 解决方案

  1. 修改 PyCharm 最大内存限制;
  2. 降低输入图像的分辨率;
  3. 对 MODNet 中的少部分层进行剪枝;

4 探索过程

4.1 方案一

打开 PyCharm 中的 VM options:
在这里插入图片描述
修改 XMX,即运用程序运行时的可用内存大小,本机的运行内存为12G,这里先对半设置 6002M。然而,运行后依旧提示内存不足,当设置为7000时,在运行中,PyCharm 自动关闭。因此,该方法无效,而且属于高危行为!

💥注意:不能绝对设置大小,考虑到计算机除 PyCharm 以外也有其他进程占用内存,因此,设置上限时需要综合考虑计算机的状况。

4.2 方案二

将 MODNet 输入尺寸从 512 降低为 256,成功剪枝!

由于使用 DataParallel 加载以后,在 GPU 上剪枝会提示显存不足!因此,笔者先将 MODNet 加载到 CPU 上,取消 DataParallel 加载,可以完成剪枝与模型加速!!

在这里插入图片描述

实际上,尽管模型是通过多卡训练保存得到,在使用 DataParallel 加载后,也可以直接转换到 CPU 上:

from src.models import modnet
import torch

model = modnet.MODNet(backbone_pretrained=False)
model = torch.nn.DataParallel(model).to('cpu')

pretrained_ckpt = torch.load('modnet_photographic_portrait_matting.ckpt')
model.load_state_dict(pretrained_ckpt, strict=False)

print(next(model.parameters()).device)  # CPU

然而,剪枝出现了问题,即 module 的参数必须是在 CUDA 上操作,在 CPU 上无效:

在这里插入图片描述

该问题表明:利用to.(‘cpu’)的方式从 CUDA 转移到 CPU 本身是没问题的,但这不被 module 接受。换句话说,在 MODNet 模型外面,包裹着 module 模块。因此,如果要在 CPU 上完成剪枝,module 是首要解决的问题!


打印结构发现:

在这里插入图片描述

和原先进行对比:

在这里插入图片描述

多了 module 模块,这是一个值得思考的地方!🙄

再次了解 torch.nn.DataParallel():

在使用多卡训练时,该函数能够将 input 数据划分,进而送进不同的卡上训练;而模型的 module 会复制到不同的卡上。换句话说,具有相同 module 的不同卡会处理划分到的数据,当然,这是 forward 部分。而在 backpropagation 部分,不同卡的梯度会累加到原始的 module 上,被 cuda:0 计算。当训练完成,保存时也会采用model.module.state_dict(),而非单卡训练时的model.state_dict();在将参数加载时,结构中也必然存在module。


因此,这也就对 NNI 中看似排除某些层,实际上没有排除解释通了:原先并未在 torch.nn.DataParallel() 加载后观察结构情况,同时也因为GPU显存不够直接将模型转到了 CPU 上,导致在剪枝的 config_list 中没有指定正确的参数名。

用 NNI 输出 flops 进行对比:

在这里插入图片描述

在这里插入图片描述


结构中的 module 模块如何处理,笔者考虑了两种方案:

  1. 修改 NNI 的config_list 为 module. 进行剪枝;
  2. 去除 module;

由于第一种方案会涉及到上述提及的问题:从 CUDA 转到 CPU 不会被 module 接受。因此我们选择方案2。

加载的 ckpt 类型为 dict,因此,通过 items 获得 key 以及 value 后可以通过 replace 替换,如下:

model = modnet.MODNet(backbone_pretrained=False)
pretrained_ckpt = 'modnet_photographic_portrait_matting.ckpt'
# model = torch.nn.DataParallel(model)
model.load_state_dict({k.replace('module.', ''):v for k, v in torch.load(pretrained_ckpt).items()})

print(model)
print(list(model.named_parameters()))

在这里插入图片描述

此时,module 模块成功去除,且惊奇发现,即使不通过 DataParallel 加载 model,每次打印得到的权重参数也保持一致了!至此,module 问题解决,在 CPU 上的剪枝也就顺其自然了~~

4.3 方案三

不论如何排除某些层,从 NNI 在控制台输出的 info 来看,每次都会从头到尾计算每一层的信息,并进行更新。此外,尽管排除了某些层,由于上一层的通道数变化会影响下一层的变化,因此还是会进行计算。

所以,通过排除某些层,或者是指定某些层进行剪枝的作法,就解决内存限制问题而言,并不合理!

5 疑惑与思考

5.1 Q1

在剪枝过后,模型精度相应也会降低,为了能恢复到原来的精度,或者是达到可接受的精度,应当进行微调(fine-tune),其中需要调整训练超参数,包括 epoch、learning rate、momentum 等;

🚩说明:剪枝模型重训练不光可以采用微调,也可从头训练。这一观点在《Rethinking the value of network pruning》一文中表明。另外,文章中通过实验说明了从头训练的效果优于微调,原因是模型剪枝后重要的是紧凑的结构,而不是原来的那些重要的权重。


笔者以 LeNet 为例做了一个剪枝后微调的实验,对比如下:

原模型剪枝后微调后
Accuracy91%85%94%

为什么剪枝模型在 fine-tune 后精度更高?

有这样一种解释,大模型提供了一个包含最优解的大的解空间,而对于小模型来说,这样的解空间较小,因此更容易找到 optimal solution,故精度会比大模型更高。


但是,有些时候或许 fine-tune 后精度还是很差,这是为什么?

注意,这里笔者思考的事为啥很差,而不是差,如果下降比例不大的话,其实是因为剪枝本身导致的信息损失,这和评价指标有关,是很难避免的。

  1. 过度剪枝: 剪枝了太多的参数,导致模型容量不足,无法捕获数据中的复杂模式,以至于模型欠拟合,表现较差。
  2. 超参数调整不当: 超参数的调整本身并不容易,不同的任务和数据集需要不同的超参数配置。笔者在调参时遇到不同的随机种子可以带来10%准确率差异!所以,模型可能无法收敛到良好的解决方案。
  3. 数据不足: 如果 fine-tuning 阶段的训练数据量不足,模型可能无法充分学习新任务的特征,导致性能下降。(这里又有一个问题,大模型小数据训练会如何?也不好训练,因为大模型可能会过于复杂,难以泛化到新的数据)
  4. 任务不适合: 原始模型可能不适合进行剪枝和 fine-tuning 的任务,某些任务可能需要更大的模型,或者可以考虑使用从头训练。(但一般fine-tune和从头训练不会差异巨大)

另外,笔者也抛出一个有意思的问题:剪枝时,我们通常会采用某一种评价准则去衡量权重的重要程度,如果重要程度低,我们认为是冗余权重,所以去除;而重要权重我们选择保留,那么,冗余权重真的冗余吗?是否也会对整个模型的评估起“支撑”作用?但笔者再想想,既然都是冗余了,那为啥还要保留?说明一定是对模型不再起作用的。所以问题就回到了这个评价准则,到底如何去设计评价准则,一直是模型剪枝的一个挑战。

5.2 Q2

在只保存剪枝后模型参数的情况下,需要修改相应的网络结构才能将参数填入结构中,那为何不可参考剪枝后的结构修改原先的结构,并进行训练?

解释:因为大模型要比小模型好训练

  1. 更多的参数: 这意味着更大的模型可以学习更复杂的特征和模式,更多的参数允许模型更好地适应训练数据,捕获更多的细节和复杂性。
  2. 更好的表示能力: 大模型有更大的容量来表示数据的复杂关系,能够学习更抽象、更深层次的特征,使其在处理复杂任务时更为有效。
  3. 更好的泛化能力: 大模型在训练中可以学到更多的信息,从而提高了其在未见数据上的泛化能力,这意味着它们更有可能在面对新的、未知的数据时表现良好。

当然,由于训练大模型需要的训练时间长,计算资源和内存消耗也更大,所以需要根据实际的情况找到 trade-off

  • 19
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
Modnet是一种用于图像分割的先进深度学习模型,它可以去除输入图像的背景并将其与另一个背景合成。而NCNN是一个轻量级的深度学习框架,可以在移动设备上高效地运行。 要将Modnet转换为NCNN,首先需要将Modnet的模型参数转换为NCNN支持的格式。Modnet通常使用一种常见的模型文件格式(如.h5或.pth),在这种情况下,我们需要使用NCNN提供的工具将这些模型参数转换为NCNN的.bin格式。 一旦完成模型参数的转换,我们就可以开始为NCNN构建网络结构。NCNN采用C++进行开发,并提供了一组用于构建深度学习网络的API。我们需要根据Modnet网络结构,使用NCNN的API逐层构建相应的网络结构。这可能需要一些深度学习和编程相关的知识。 在网络结构建立后,我们需要通过NCNN提供的编译器将网络结构和模型参数编译为可在移动设备上运行的二进制文件。这个过程会将网络结构和参数优化为移动设备上的低功耗和高效率。 一旦编译完成,我们就可以在移动设备上使用NCNN运行转换后的Modnet模型了。我们可以将待处理的图像输入到NCNN的网络中,并使用NCNN提供的API进行推理和处理。最终的结果将是一个去除背景并合成新背景的图像。 总而言之,将Modnet转换为NCNN需要将模型参数转换为NCNN支持的格式,构建相应的网络结构,将网络结构和参数编译为可在移动设备上运行的二进制文件,最后在移动设备上使用NCNN进行图像分割和合成。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Maitre Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值