决策树实验(对乳腺癌数据集进行训练和预测+graphviz模块下载安装)

本文通过Python实现决策树对乳腺癌数据集的训练和预测,探讨参数调整、画决策树、预剪枝以及利用Graphviz模块。同时,对比随机森林在相同数据集上的性能,展示其优势。
摘要由CSDN通过智能技术生成

注:在本次实验中需安装graphviz模块

在用命令提示符(pip)安装不上模块时,可以直接在官网上下载https://graphviz.org/download/安装包

官网上下载有点慢:可以用网盘下载:链接:https://pan.baidu.com/s/1qikLWkNxU3TOasa4iV2pRw?pwd=qko1 
提取码:qko1(在后续文章中会有问题的出现以及解决方法)

1.引入库、数据集

对数据集进行初步的处理,并将其划分为训练集和测试集

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
#加载数据
cancer = load_breast_cancer()
#分离数据,stratify作用为以分层方式分割数据,保持测试集与整个数据集里cancer.target的数据分类比例一致
#随机数种子为42
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=42)

在无参数设置情况下,输出得分

#调用函数
tree = DecisionTreeClassifier(random_state=0)
#训练模型
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))

输出结果:

 2.调参

  • 利用数组和循环(学习曲线)求得最优参数(对比criterion值为‘gini’、'entropy'的得分)导入乳腺癌数据集,并在无参数设置情况下,输出得分

 (1)当criterion='gini'时

#利用数组循环求得最优参数
score0= []
C = range(1,101,10)
for i in C:
    tree = DecisionTr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝胖子Y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值